- #1
- 2,589
- 2,206
I was playing around with numbers and found that the equivalent temperature for Hawking radiation from a Planck mass black hole is ~5×1030 K. Later, I saw that the Hagedorn temperature for strings (where the partition function is expected to diverge) is reported to be around ~1030 K. I thought "wow this is a really intriguing coincidence!" and then I started to wonder whether it's actually a coincidence. It could be that the string Hagedorn temperature demarcates a phase transition from "ordinary" matter to stringy black hole matter at sufficient energy density. If so, that (in my opinion) would mark a plausible and fairly impressive quantum-ish explanation of how black holes are formed.
Since I don't really know how the Hagedorn temperature was calculated, my question is this: Is it a coincidence? Or does this aspect of string theory actually predict a phase transition at the same order of magnitude that you would expect quantum effects to dominate a gravitational system (Hawking radiation from a Planck mass black hole)? Or is it a sleight of hand: maybe string theorists used what they know about Hawking radiation to come up with a plausible value for the Hagedorn temperature (which might give an estimate for some other parameter--such as string tension--that they'd like to know)?
A note: I have an advanced degree (in chemical physics), but I know nothing about string theory other than the pop-sci stuff, which is why I marked the thread "Basic." Be gentle :)
Since I don't really know how the Hagedorn temperature was calculated, my question is this: Is it a coincidence? Or does this aspect of string theory actually predict a phase transition at the same order of magnitude that you would expect quantum effects to dominate a gravitational system (Hawking radiation from a Planck mass black hole)? Or is it a sleight of hand: maybe string theorists used what they know about Hawking radiation to come up with a plausible value for the Hagedorn temperature (which might give an estimate for some other parameter--such as string tension--that they'd like to know)?
A note: I have an advanced degree (in chemical physics), but I know nothing about string theory other than the pop-sci stuff, which is why I marked the thread "Basic." Be gentle :)