Heat equation with non homogeneous BCs

jackkk_gatz
Messages
45
Reaction score
1
Homework Statement
$$\frac{1}{r}\frac{\partial }{\partial r}(r\frac{\partial T}{\partial r})+\frac{\partial^2T}{\partial z^2}=0$$

$$\left.-k\frac{\partial T}{\partial r}\right\rvert_{r=R}=h[T(R,z)-T_{\infty}]$$

$$\left.k\frac{\partial T}{\partial z}\right\rvert_{z=H}+h[T(r,H)-T_{\infty}]=q_s$$

$$\left.-k\frac{\partial T}{\partial z}\right\rvert_{z=0}=0$$

$$\left.-k\frac{\partial T}{\partial r}\right\rvert_{r=0}=0$$

$where \ T_0 \ ,T_{\infty} \ and \ q_s \ are \ constants$
Relevant Equations
-
I did a change of variable $$\theta(r,z) = T(r,z)-T_{\infty}$$ which resulted in

$$\frac{1}{r}\frac{\partial }{\partial r}(r\frac{\partial \theta}{\partial r})+\frac{\partial^2 \theta}{\partial z^2}=0$$

$$\left.-k\frac{\partial \theta}{\partial r}\right\rvert_{r=R}=h\theta$$

$$\left.k\frac{\partial \theta}{\partial z}\right\rvert_{z=H}+h\theta=q_s$$

$$\left.-k\frac{\partial \theta}{\partial z}\right\rvert_{z=0}=0$$

$$\left.-k\frac{\partial \theta}{\partial r}\right\rvert_{r=0}=0$$

After that I proposed $$\theta(r,z)=v(r,z)+w(r,z)$$ where w(r,z) should must satisfy

$$\left.-k\frac{\partial w}{\partial r}\right\rvert_{r=R}=hw(R,z)$$

$$\left.k\frac{\partial w}{\partial z}\right\rvert_{z=H}+hw(r,H)=q_s$$

$$\left.-k\frac{\partial w}{\partial z}\right\rvert_{z=0}=0$$

$$\left.-k\frac{\partial w}{\partial r}\right\rvert_{r=0}=0$$

I already tried interpolation, doesn't work. I don't know how w(r,z) should look like in order to satisfy the above equations. Is there an easier method?
In short, everything I have been trying has failed and I don't know what to do anymore, I have looked for books on PDEs, all the ones I have found deal with very simple cases, which are of no use to me. I have almost no experience solving this kind of equations to know what to do or to guess how w might look like
 
Last edited:
Physics news on Phys.org
I just noticed I asked my question in the wrong section 💀
 
Have you tried obtaining the general solution by the method of separation of variables? It looks like it will work in this case but I have not solved the problem.

What is ##x=0## doing in the boundary condition ##~\left.-k\dfrac{\partial T}{\partial r}\right\rvert_{x=0}=0~##. Is it a typo?

I reported this thread and it should be moved to the Advanced Homework forum by a mentor at some point in time.
 
kuruman said:
Have you tried obtaining the general solution by the method of separation of variables? It looks like it will work in this case but I have not solved the problem.

What is ##x=0## doing in the boundary condition ##~\left.-k\dfrac{\partial T}{\partial r}\right\rvert_{x=0}=0~##. Is it a typo?

I reported this thread and it should be moved to the Advanced Homework forum by a mentor at some point in time.
Yes it was a typo, fixed it already. And yes I have tried to get the the general solution by the method of separation of variables, the thing is I know how to apply it but with homogeneous BC where I do some things with Sturm-Liouville. The thing is Sturm-Liouville only works with homogeneous BCs, I know a method to transform the non homogeneous BCs to homogeneous, which is the one I already wrote where I have to guess the form of w(r,z)

And thanks for helping to move my question to the right section
 
jackkk_gatz said:
I have tried to get the the general solution by the method of separation of variables,
Wolfram gives me Bessel functions.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top