Heat equation with non homogeneous BCs

jackkk_gatz
Messages
45
Reaction score
1
Homework Statement
$$\frac{1}{r}\frac{\partial }{\partial r}(r\frac{\partial T}{\partial r})+\frac{\partial^2T}{\partial z^2}=0$$

$$\left.-k\frac{\partial T}{\partial r}\right\rvert_{r=R}=h[T(R,z)-T_{\infty}]$$

$$\left.k\frac{\partial T}{\partial z}\right\rvert_{z=H}+h[T(r,H)-T_{\infty}]=q_s$$

$$\left.-k\frac{\partial T}{\partial z}\right\rvert_{z=0}=0$$

$$\left.-k\frac{\partial T}{\partial r}\right\rvert_{r=0}=0$$

$where \ T_0 \ ,T_{\infty} \ and \ q_s \ are \ constants$
Relevant Equations
-
I did a change of variable $$\theta(r,z) = T(r,z)-T_{\infty}$$ which resulted in

$$\frac{1}{r}\frac{\partial }{\partial r}(r\frac{\partial \theta}{\partial r})+\frac{\partial^2 \theta}{\partial z^2}=0$$

$$\left.-k\frac{\partial \theta}{\partial r}\right\rvert_{r=R}=h\theta$$

$$\left.k\frac{\partial \theta}{\partial z}\right\rvert_{z=H}+h\theta=q_s$$

$$\left.-k\frac{\partial \theta}{\partial z}\right\rvert_{z=0}=0$$

$$\left.-k\frac{\partial \theta}{\partial r}\right\rvert_{r=0}=0$$

After that I proposed $$\theta(r,z)=v(r,z)+w(r,z)$$ where w(r,z) should must satisfy

$$\left.-k\frac{\partial w}{\partial r}\right\rvert_{r=R}=hw(R,z)$$

$$\left.k\frac{\partial w}{\partial z}\right\rvert_{z=H}+hw(r,H)=q_s$$

$$\left.-k\frac{\partial w}{\partial z}\right\rvert_{z=0}=0$$

$$\left.-k\frac{\partial w}{\partial r}\right\rvert_{r=0}=0$$

I already tried interpolation, doesn't work. I don't know how w(r,z) should look like in order to satisfy the above equations. Is there an easier method?
In short, everything I have been trying has failed and I don't know what to do anymore, I have looked for books on PDEs, all the ones I have found deal with very simple cases, which are of no use to me. I have almost no experience solving this kind of equations to know what to do or to guess how w might look like
 
Last edited:
Physics news on Phys.org
I just noticed I asked my question in the wrong section 💀
 
Have you tried obtaining the general solution by the method of separation of variables? It looks like it will work in this case but I have not solved the problem.

What is ##x=0## doing in the boundary condition ##~\left.-k\dfrac{\partial T}{\partial r}\right\rvert_{x=0}=0~##. Is it a typo?

I reported this thread and it should be moved to the Advanced Homework forum by a mentor at some point in time.
 
kuruman said:
Have you tried obtaining the general solution by the method of separation of variables? It looks like it will work in this case but I have not solved the problem.

What is ##x=0## doing in the boundary condition ##~\left.-k\dfrac{\partial T}{\partial r}\right\rvert_{x=0}=0~##. Is it a typo?

I reported this thread and it should be moved to the Advanced Homework forum by a mentor at some point in time.
Yes it was a typo, fixed it already. And yes I have tried to get the the general solution by the method of separation of variables, the thing is I know how to apply it but with homogeneous BC where I do some things with Sturm-Liouville. The thing is Sturm-Liouville only works with homogeneous BCs, I know a method to transform the non homogeneous BCs to homogeneous, which is the one I already wrote where I have to guess the form of w(r,z)

And thanks for helping to move my question to the right section
 
jackkk_gatz said:
I have tried to get the the general solution by the method of separation of variables,
Wolfram gives me Bessel functions.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top