What is the maximum height reached by an object with air resistance?

Click For Summary
SUMMARY

The discussion focuses on calculating the maximum height reached by an object projected vertically into the air while accounting for air resistance. The equation of motion is given by m(dv/dt) = -mg - kv², leading to a velocity function v(t) = (mg/k)tan[arctan(√(k/mg)v₀) - √(gk/m)t]. The participants identify issues with the integration process, specifically regarding the antiderivative and the resulting negative height, which indicates a mistake in the calculations. The correct approach involves recognizing the relationship between trigonometric functions and ensuring proper handling of constants during integration.

PREREQUISITES
  • Understanding of differential equations and their solutions
  • Familiarity with trigonometric functions and their properties
  • Knowledge of air resistance modeling in physics
  • Proficiency in integration techniques, particularly for non-linear functions
NEXT STEPS
  • Study the derivation of the velocity function under air resistance using separation of variables
  • Learn about numerical methods for solving differential equations when analytical solutions are complex
  • Explore the implications of air resistance on projectile motion in physics
  • Investigate the use of Matlab or Python for simulating projectile motion with air resistance
USEFUL FOR

Students and professionals in physics, engineers working on projectile dynamics, and anyone interested in the mathematical modeling of motion with air resistance.

nos
Messages
40
Reaction score
0
Hello everyone,

I was playing around with some equations regarding air resistance. I tried to calculate the height that is reached by an object that is projected vertically into the air. However something seems to go wrong when integrating.

Starting with the equation of motion
\begin{align*}
m\frac{dv}{dt}=-mg-kv^2.
\end{align*}
Setting \begin{align*}a=\sqrt{\frac{km}{g}},\\
v(0)=v_0.
\end{align*}
Then the solution to this differential equation is
\begin{align*}
v(t)=\frac{\tan{(\arctan{(av_0)}-gt})}{a}.
\end{align*}
Then the time it take to slow the object to a standstill(where it reaches maximum height) is
\begin{align*}
t_{end}=\frac{\arctan{(av_0)}}{g}.
\end{align*}

So the distance traveled in this time can be found by integrating the velocity function over this time.

\begin{align*}
h&=\int_0^{t_{end}}\frac{\tan{(\arctan{(av_0)}-gt})}{a}dt\\
&=\frac{1}{ga}(\ln{\cos{(arctan{(av_0)}-gt_{end})}}-\ln{\cos{(\arctan{(av_0)}}}.
\end{align*}
I did not even bother going through with it, it's going to come out negative.

I'm not actually sure this is the right antiderivative. Or maybe I lost a minus sign somewhere. I can't spot it.
Thanks :)
 
Physics news on Phys.org
Something went wrong with units, the formulas cannot be right.
 
How are you sure that you can solve this analytically? I think it can only be solved numerically. I could be wrong though.
 
It's solvable by separation of constants:
$$-\frac{m}{mg+k v^2} \mathrm{d} v=\mathrm{d} t.$$
Because we have
$$\int \mathrm{d} v \frac{m}{mg+k v^2} =\frac{1}{g} \int \mathrm{d} v \frac{1}{1+(\sqrt{k/(mg)} v)^2} = \sqrt{\frac{m}{gk}} \arctan \left (\sqrt{\frac{k}{mg}} v \right),$$
we get
$$\sqrt{\frac{m}{gk}} \left [\arctan \left (\sqrt{\frac{k}{mg}} v \right)-\arctan \left (\sqrt{\frac{k}{mg}} v_0 \right) \right]=-t.$$
This gives you ##v(t)##. Integrating once more gives ##h(t)##.
 
This is the correct answer for the velocity function. I realized I missed a constant and instead \begin{align*}
a=\sqrt{\frac{k}{mg}}\end{align*}

So \begin{align*}
v(t)=\sqrt{\frac{mg}{k}}\tan{\Big[\arctan{\Big(\sqrt{\frac{k}{mg}}v_0\Big)}-\sqrt{\frac{gk}{m}}t\Big]}
\end{align*}
Integrating this
\begin{align*}
h&=\sqrt{\frac{mg}{k}}\int_0^{t_{end}} \tan{\Big[\arctan{\Big(\sqrt{\frac{k}{mg}}v_0\Big)}-\sqrt{\frac{gk}{m}}t\Big]}dt\\
&=\frac{m}{k}\Big[\ln{\cos{0}}-\ln{\cos{\Big(\arctan{\big(\sqrt{\frac{k}{mg}}v_0\big)}\Big)}}\Big]\\
&=-\ln{\Big(\sqrt{1+\frac{k}{mg}v_0^2}\Big)}.
\end{align*}

This will give me a negative height, which is impossible.
 
Last edited:
The cosine of something cannot exceed 1, so the logarithm of it has to be negative or zero. The second last line is always zero or positive, not sure what happened afterwards.
 
Oh right thanks, so the second last line is positive. I tried to simplify the answer a bit more and this is where I think made a mistake.
Imagine a triangle with angle θ.
\begin{align*}
\theta=\arctan{\sqrt{\frac{k}{mg}}v_0}
\end{align*}
Then the opposite and adjacent sides are
\begin{align*}
O&=\sqrt{\frac{k}{mg}}v_0\\
A&=1
\end{align*}
Then the cosine of this configuration must be \begin{equation*}\cos{\theta}= \frac{\sqrt{1+\frac{k}{mg}v_o^2}}{1}\end{equation*}

Edit: I see this is the secant and not cosine haha, so that will account for the minus sign :) thanks for replying
 
In the last equation there is a square root missing and you have to swap numerator and denominator. Taken out of the log that gives a factor -1/2 which makes the result positive.
 
the formulas could be much shorter

Let ##s## be the path, ##\dot s=v##. Then equation
nos said:
mdvdt=−mg−kv2.​
takes the form
##m\frac{dv}{ds}v=-mg-kv^2## and
separating variables we get
$$s-s_0=\int_{v_0}^0\frac{mvdv}{-mg-kv^2}=-\frac{m}{2k}\ln(mg+kv^2)\Big|_{v_0}^0$$
 
  • Like
Likes   Reactions: vanhees71, nasu and Delta2

Similar threads

  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
6
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K