Heisenberg Uncertainty Relation for mixed states

Click For Summary
SUMMARY

The Heisenberg uncertainty relation for mixed states can be derived from the established proof for pure states by utilizing the density matrix formalism. The key operators involved are self-adjoint operators ##\hat{A}## and ##\hat{B}##, with the relation expressed as ##\Delta A \Delta B \geq \frac{1}{2} |\langle \mathrm{i} [\hat{A},\hat{B}] \rangle|##. The proof leverages the properties of positive semi-definite operators and their eigenbasis, confirming that adding statistical uncertainty does not decrease the uncertainty in observables. This conclusion is supported by the mathematical framework presented in the referenced document from the University of Vienna.

PREREQUISITES
  • Understanding of quantum mechanics concepts, particularly uncertainty relations.
  • Familiarity with density matrices and their properties.
  • Knowledge of self-adjoint operators in quantum mechanics.
  • Basic proficiency in linear algebra, particularly eigenvalues and eigenvectors.
NEXT STEPS
  • Study the derivation of the Heisenberg uncertainty principle for pure states.
  • Explore the mathematical properties of density matrices in quantum mechanics.
  • Learn about the implications of the Heisenberg-Robertson uncertainty relation in quantum systems.
  • Investigate the role of self-adjoint operators in quantum observables and their measurement outcomes.
USEFUL FOR

Quantum physicists, graduate students in physics, and researchers focusing on quantum mechanics and uncertainty principles will benefit from this discussion.

Jamister
Messages
58
Reaction score
4
TL;DR
proving the Heisenberg uncertainty relations for mixed states
How do you prove Heisenberg uncertainty relations for mixed states (density matrix), only from knowing the relation is true for pure states?
 
Physics news on Phys.org
You can prove it for any state. Let ##\hat{A}## and ##\hat{B}## be the self-adjoint operators representing observables and assume for simplicity that ##\langle A \rangle=\langle B \rangle=0##, where ##\langle \hat{A} \rangle=\mathrm{Tr}(\hat \rho \hat{A})##. Since ##\hat{\rho}## is a positive semi-definite self-adjoint operator there's a complete orthonormalized eigenbasis ##|u_n \rangle##, i.e.,
$$\hat{\rho}=\sum_n p_n |u_n \rangle \langle u_n |.$$
Thus any expectation value reads
$$\langle A \rangle = \mathrm{Tr} (\hat{\rho} \hat{A}) = \sum_{n} \langle u_n| \rho_n \hat{A} |u_n \rangle = \sum_n P_n \langle u_n |\hat{A}| u_n \rangle.$$
Now apply this to the self-adjoint operator
$$\hat{C}=(\hat{A}-\mathrm{i} \lambda \hat{B})(\hat{A}+\mathrm{i} \lambda \hat{B}), \quad \lambda \in \mathbb{R}.$$
First of all
$$\langle u_n|\hat{C}| u_n \rangle=\langle (\hat{A}+\mathrm{i} \lambda \hat{B}) u_n|(\hat{A}+\mathrm{i} \lambda \hat{B}) u_n \rangle \geq 0.$$
And since ##P_n \geq 0## for all ##n## you also have
$$P(\lambda)=\langle (\hat{A}-\mathrm{i} \lambda \hat{B})(\hat{A}+\mathrm{i} \lambda \hat{B}) \rangle \geq 0.$$
Multiplying this out gives
$$P(\lambda) = \langle A^2 \rangle + \langle \mathrm{i} [\hat{A},\hat{B}] \rangle \lambda + \lambda^2 \langle \hat{B}^2 \rangle.$$
Now ##\langle A^2 \rangle=\Delta A^2## and ##\langle B^2 \rangle=\Delta B^2## are the variances of ##A## and ##B## (because we assumed ##\langle A \rangle=\langle B \rangle=0##), i.e.,
$$P(\lambda)=\lambda^2 \Delta B^2 + \lambda \langle \mathrm{i} [\hat{A},\hat{B}]\rangle + \Delta A^2 \geq 0$$
für ##\lambda \geq 0##. Now ##P(\lambda)## is a real quadratic polynomial and thus its discriminant fulfills,
$$\frac{1}{4} \langle \mathrm{i} [\hat{A},\hat{B}] \rangle^2 - \Delta A^2 \Delta B^2 \leq 0,$$
and from this finally
$$\Delta A \Delta B \geq \frac{1}{2} |\langle \mathrm{i} [\hat{A},\hat{B}] \rangle|,$$
which is the Heisenberg-Robertson uncertainty relation.
 
  • Like
  • Love
Likes   Reactions: DrChinese, hilbert2 and PeroK
vanhees71 said:
You can prove it for any state. Let ##\hat{A}## and ##\hat{B}## be the self-adjoint operators representing observables and assume for simplicity that ##\langle A \rangle=\langle B \rangle=0##, where ##\langle \hat{A} \rangle=\mathrm{Tr}(\hat \rho \hat{A})##. Since ##\hat{\rho}## is a positive semi-definite self-adjoint operator there's a complete orthonormalized eigenbasis ##|u_n \rangle##, i.e.,
$$\hat{\rho}=\sum_n p_n |u_n \rangle \langle u_n |.$$
Thus any expectation value reads
$$\langle A \rangle = \mathrm{Tr} (\hat{\rho} \hat{A}) = \sum_{n} \langle u_n| \rho_n \hat{A} |u_n \rangle = \sum_n P_n \langle u_n |\hat{A}| u_n \rangle.$$
Now apply this to the self-adjoint operator
$$\hat{C}=(\hat{A}-\mathrm{i} \lambda \hat{B})(\hat{A}+\mathrm{i} \lambda \hat{B}), \quad \lambda \in \mathbb{R}.$$
First of all
$$\langle u_n|\hat{C}| u_n \rangle=\langle (\hat{A}+\mathrm{i} \lambda \hat{B}) u_n|(\hat{A}+\mathrm{i} \lambda \hat{B}) u_n \rangle \geq 0.$$
And since ##P_n \geq 0## for all ##n## you also have
$$P(\lambda)=\langle (\hat{A}-\mathrm{i} \lambda \hat{B})(\hat{A}+\mathrm{i} \lambda \hat{B}) \rangle \geq 0.$$
Multiplying this out gives
$$P(\lambda) = \langle A^2 \rangle + \langle \mathrm{i} [\hat{A},\hat{B}] \rangle \lambda + \lambda^2 \langle \hat{B}^2 \rangle.$$
Now ##\langle A^2 \rangle=\Delta A^2## and ##\langle B^2 \rangle=\Delta B^2## are the variances of ##A## and ##B## (because we assumed ##\langle A \rangle=\langle B \rangle=0##), i.e.,
$$P(\lambda)=\lambda^2 \Delta B^2 + \lambda \langle \mathrm{i} [\hat{A},\hat{B}]\rangle + \Delta A^2 \geq 0$$
für ##\lambda \geq 0##. Now ##P(\lambda)## is a real quadratic polynomial and thus its discriminant fulfills,
$$\frac{1}{4} \langle \mathrm{i} [\hat{A},\hat{B}] \rangle^2 - \Delta A^2 \Delta B^2 \leq 0,$$
and from this finally
$$\Delta A \Delta B \geq \frac{1}{2} |\langle \mathrm{i} [\hat{A},\hat{B}] \rangle|,$$
which is the Heisenberg-Robertson uncertainty relation.
but you proved it from the beginning. how do you prove it by using the assumption from pure states, and not repeating the all process again
 
  • Sad
Likes   Reactions: PeroK
hilbert2 said:
I wouldn't expect the uncertainty in any observable to get smaller by adding statistical uncertainty to the already existing quantum uncertainty in the position and momentum. It can only increase.

There's something said about this on page 16 here: https://www.univie.ac.at/nuhag-php/dateien/talks/1073_NuHAG_WPI_2008.pdf
I don't think it's obvious
 
Jamister said:
but you proved it from the beginning. how do you prove it by using the assumption from pure states, and not repeating the all process again
You only get one proof for free! If you want another one, you have to show some effort yourself.
 
  • Haha
  • Like
Likes   Reactions: vanhees71, Vanadium 50, hutchphd and 3 others
Jamister said:
but you proved it from the beginning. how do you prove it by using the assumption from pure states, and not repeating the all process again
For pure states the proof is almost the same. You just set one of the ##p_n=1## and all others to 0.
 

Similar threads

  • · Replies 32 ·
2
Replies
32
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 15 ·
Replies
15
Views
2K