# Heisenbergs uncertainity principle for an electron

## Homework Statement

The speed of an electron is measured to within an uncertainty of 2e4 m/s. What is the size of the smallest region of space in which the electron can be confined?

## Homework Equations

Diracs Constant=ΔxΔp
p=mv

## The Attempt at a Solution

what I did was (Diracs Constant)/mv = Δx, (1.054560653e-34)/((9.109e-31)(2e4))=6nm this is this incorrect but I dont understand why?

Related Introductory Physics Homework Help News on Phys.org

## Homework Statement

The speed of an electron is measured to within an uncertainty of 2e4 m/s. What is the size of the smallest region of space in which the electron can be confined?

## Homework Equations

Diracs Constant=ΔxΔp
p=mv

## The Attempt at a Solution

what I did was (Diracs Constant)/mv = Δx, (1.054560653e-34)/((9.109e-31)(2e4))=6nm this is this incorrect but I dont understand why?
Hi,
I am not sure, I may be wrong.
Use Heisenberg uncertainty principle:
$$\Delta x \Delta p ≥ \hbar/2.$$
The given value is not the speed of electron. It is the uncertainty of speed.
Got it?

Hi. Not value but only order of value has meaning in this situation. Order of nano meter seems fine. What is the 'correct' answer you have got?

Sweet springs the correct answer is 5.8nm what I get is 6nm I know it's so close but it's not what I'm getting. Rajini given the uncertainty of speed how then would I find speed go the electron so I can find p.

Ok I'm starting to think I got the right answer after using wolfram I get 5.78 I am starting to think my calculator has some kind of rounding algorithm