There is no method that proves everything for any case of any thing. You just have to do it. How would you prove something somewhere other than maths? To show closure you need to show that if you add up two elements satisfying some condition you get another satisfying the same condition. How you do that depends on the space and the condition.
I'm also confused about proofs, can somebody provide me with a proof for why general functions form a vector space.
they don't so you cannot, but as was pointed out you probably haven't stated the question fully.
I don't know what the ~ symbol means and what it means to be a quotient space, it doesn't seem to be a easy concept.
it is easy if you know what an equivalence relation is. Try finding out about these before looking at quotient spaces. If you understand modulo arithmetic you can understand this, and you use modulo arithmetic all the time: every time you work out what day it is in 12 days time you're doing modulo arithmetic. The day in 12 days time is the same day as it is in 5 days time, because we're declaring dates that differ by 7 to be the same day. And the day 5 days hence is the same day as two days ago, thus it will be a Monday (for me at the time of writing this). You're doing the same thing here but you just don't have nice labels for things like monday, wednesday etc. Essentially all you need are examples.
Consider the real numbers R, and consider V to be the set of functions from R to R. This is a vector space over R: the sum of two functions from R to R is a function from R to R, as a scalar multiples of of functions from R to R. the function f(x)=0 is a zero vector.
The set of functions W satisfying g(0)=0 is a sub vector space: if g and h vanish at 0 so does rg+th for any r,t n R.
It has a quotient space V/W. It is the set of all functions from R to R except that whenever we see two functions p(x) and q(x) such that p(0)-q(0)=0 (or p(0)=q(0)) then we'll say they represent the same vector, just like dates separated by 7 days have the same name.
Let's make it even easier to visualize. Suppose V is actually the set of all polynomial functions from R to R, and W is defined accordingly, then V is a vector space, W a subspace and V/W can be explicitly described. p(0) is just the constant term! So we're saying that the quotient is where we identify polynomials with the same constant term. We can get an explicit descrption of this since we can pick a distinguished name for all polynomials with the same constant term, if the constant term is k in R, let the name also be k (this is just like naming things monday or tuesday), so the quotient space is exactly R as a vector space.