MHB Help Needed: I'm Stuck on Steps and Not Sure If They're Correct

  • Thread starter Thread starter Joe20
  • Start date Start date
  • Tags Tags
    Stuck
AI Thread Summary
The discussion revolves around a user seeking help with their steps in a mathematical problem involving vector cross products. An alternate method is suggested to simplify the process by using the equality p×q = 3p×r and applying the BAC-CAB identity to avoid tedious calculations. The user then continues the discussion by manipulating the equation and asking if their derived expression is correct. They inquire whether the term [(p.q) - (3p.r)] / (p.p) represents a scalar or lambda. The conversation emphasizes clarifying the correctness of the steps and the interpretation of the resulting expressions.
Joe20
Messages
53
Reaction score
1
I have done up some of the steps. I got stuck and not sure how to continue. I am not sure if those steps are correct. Need help on that.

View attachment 7976

View attachment 7975
 

Attachments

  • v.jpg
    v.jpg
    88.6 KB · Views: 117
  • Picture3.jpg
    Picture3.jpg
    11.8 KB · Views: 110
Last edited by a moderator:
Mathematics news on Phys.org
Hi, Alexis87.

Alexis87 said:
I have done up some of the steps. I got stuck and not sure how to continue. I am not sure if those steps are correct. Need help on that.

I did not check the details of the work you posted, so I am not suggesting that anything you did there is incorrect. The intent of this post is to suggest an alternate method that avoids the need for computing tedious cross products using vector components.

Using the equality $p\times q = 3p\times r,$ take the cross product on both left hand sides with $p$; i.e.,

$p\times q = 3p\times r\qquad\Longrightarrow\qquad p\times(p\times q)=3p\times(p\times r)$

and now use the "BAC-CAB" BAC-CAB Identity -- from Wolfram MathWorld rule and some algebra to get your desired result (noting that the various dot products you obtain from the BAC-CAB rule are constants).
 
GJA said:
Hi, Alexis87.
I did not check the details of the work you posted, so I am not suggesting that anything you did there is incorrect. The intent of this post is to suggest an alternate method that avoids the need for computing tedious cross products using vector components.

Using the equality $p\times q = 3p\times r,$ take the cross product on both left hand sides with $p$; i.e.,

$p\times q = 3p\times r\qquad\Longrightarrow\qquad p\times(p\times q)=3p\times(p\times r)$

and now use the "BAC-CAB" BAC-CAB Identity -- from Wolfram MathWorld rule and some algebra to get your desired result (noting that the various dot products you obtain from the BAC-CAB rule are constants).
Continuing from your advice:

p x (p x q) = 3p x (p x r)

p(p.q) - q(p.p) = p(3p.r) - r(3p.p)

p(p.q) - p(3p.r) = q(p.p) - 3r(p.p)

p[(p.q)-(3p.r)] = (q - 3r) (p.p)

p [(p.q)-(3p.r)] /(p.p) = q-3r => Is it correct ? then [(p.q)-(3p.r)] /(p.p) will be the scalar or lamda?
 
That's correct.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top