Help Needed: Proving Logical Equivalence of (C -> A) and (!C -> B)

  • Thread starter Thread starter flying2000
  • Start date Start date
  • Tags Tags
    Work
flying2000
Messages
40
Reaction score
0
1) (C -> A) and (!C -> B)
2) (A and C) or (!C and B)

I use the logic calculator and found these two formulas are logical equivalent, but I spend 2 hours there and still can't prove it because I can't eliminate one of the three items.

Can anyone help me?

Thanks in advance!
 
Last edited:
Physics news on Phys.org
flying2000 said:
1) (C -> A) and (!C -> B)
2) (A and C) or (!C or B)

I use the logic calculator and found these two formulas are logical equivalent, but I spend 2 hours there and still can't prove it because I can't eliminate one of the three items.

Can anyone help me?

Thanks in advance!

((C -> A) & (~C -> B)) <-> ((A & C) v (~C v B)), is not valid.

It fails if A=B=C=false.
 
sorry, man, I made a mistake here,
the second one should be:
((A & C) v (~C & B)), it should be equivalent.


Owen Holden said:
((C -> A) & (~C -> B)) <-> ((A & C) v (~C v B)), is not valid.

It fails if A=B=C=false.
 
(C -> A) :: A v ~C
(~C -> B) :: C v B
So ((C -> A) & (~C -> B)) :: (A v ~C) & (C v B)
:: ((A v ~C) & C) v ((A v ~C) & B)
:: ((A & C) v (~C & C)) v ((A & B) v (~C & B))
:: (A & C) v (A & B) v (~C & B)
:: AC + AB + ~CB (change of notation)

I expanded it out into canonical form and combined terms:

:: AC(B + ~B) + AB(C + ~C) + ~CB(A + ~A)
:: ACB + AC~B + ~CBA + ~CB~A + ABC + AB~C
:: ABC + AC~B + ~CBA + ~CB~A
:: ~CB + AC
 
Last edited:
Thank you so much!

U r so helpful, man. thanx!

BicycleTree said:
(C -> A) :: A v ~C
(~C -> B) :: C v B
So ((C -> A) & (~C -> B)) :: (A v ~C) & (C v B)
:: ((A v ~C) & C) v ((A v ~C) & B)
:: ((A & C) v (~C & C)) v ((A & B) v (~C & B))
:: (A & C) v (A & B) v (~C & B)
:: AC + AB + ~CB (change of notation)

I expanded it out into canonical form and combined terms:

:: AC(B + ~B) + AB(C + ~C) + ~CB(A + ~A)
:: ACB + AC~B + ~CBA + ~CB~A + ABC + AB~C
:: ABC + AC~B + ~CBA + ~CB~A
:: ~CB + AC
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top