MHB Help solving/proofing an Integral Equation

cdbsmith
Messages
6
Reaction score
0
Need help showing that both sides of the following integral are equal. Any help would be greatly appreciated.
 

Attachments

  • Q2 - Integral Proof.png
    Q2 - Integral Proof.png
    2.3 KB · Views: 89
Physics news on Phys.org
cdbsmith said:
Need help showing that both sides of the following integral are equal. Any help would be greatly appreciated.

Since the integral equation is given (and assuming $X_0 = 0$), it suffices to show

$\displaystyle d(X_t^4 - 6tX_t^2 + 3t^2) = (4X_t^3 - 12tX_t)\, dX_t$.

To do this, set $f(t, x) = x^4 - 6tx^2 + 3t^2$ and apply Ito's lemma to get

$\displaystyle df(t, X_t) = \left(f_t + \frac{f_{xx}}{2}\right) dt + f_x \, dX_t$,

$\displaystyle df(t, X_t) = \left(-6X_t^2 + 6t + \frac{12X_t^2 - 12t}{2}\right) dt + (4X_t^3 - 12tX_t)\, dX_t$,

$\displaystyle df(t, X_t) = (-6X_t^2 + 6t + 6X_t^2 - 6t)\, dt + (4X_t^3 - 12tX_t)\, dX_t$,

$\displaystyle df(t, X_t) = 0\, dt + (4X_t^3 - 12tX_t)\, dX_t$,

$\displaystyle d(X_t^4 - 6tX_t^2 + 3t^2) = (4X_t^3 - 12tX_t)\, dX_t$.
 
Euge said:
Since the integral equation is given (and assuming $X_0 = 0$), it suffices to show

$\displaystyle d(X_t^4 - 6tX_t^2 + 3t^2) = (4X_t^3 - 12tX_t)\, dX_t$.

To do this, set $f(t, x) = x^4 - 6tx^2 + 3t^2$ and apply Ito's lemma to get

$\displaystyle df(t, X_t) = \left(f_t + \frac{f_{xx}}{2}\right) dt + f_x \, dX_t$,

$\displaystyle df(t, X_t) = \left(-6X_t^2 + 6t + \frac{12X_t^2 - 12t}{2}\right) dt + (4X_t^3 - 12tX_t)\, dX_t$,

$\displaystyle df(t, X_t) = (-6X_t^2 + 6t + 6X_t^2 - 6t)\, dt + (4X_t^3 - 12tX_t)\, dX_t$,

$\displaystyle df(t, X_t) = 0\, dt + (4X_t^3 - 12tX_t)\, dX_t$,

$\displaystyle d(X_t^4 - 6tX_t^2 + 3t^2) = (4X_t^3 - 12tX_t)\, dX_t$.

Thanks, Euge!

I'm going to study your solution and try to understand it. I will let you know if I get stuck on something.

Thanks again!
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top