Help With Negative Phases in a Numerical Term

Click For Summary
The discussion focuses on resolving issues related to negative phases in a numerical term. The original poster has made progress with the numerator but is struggling to integrate the negative phases effectively. They suspect an error in their calculations, particularly near the value of 4.14. A key suggestion is to multiply "terms" by its complex conjugate when evaluating |terms|^2. Clarifying these points is essential for achieving a correct final result.
Blanchdog
Messages
56
Reaction score
22
Homework Statement
Verify that ##T^{tot}=\frac{n_2~cos \theta_2}{n_0~cos \theta_0}\frac{|t^{0\rightarrow1}|^2|t^{1\rightarrow2}|^2}{|e^{-ikd~cos\theta_1} - r^{0\leftarrow1}r^{1\rightarrow2}e^{ikd~cos\theta_1}|^2}## simplifies to ##T^{tot}=\frac{T^{max}}{1 + F~sin^2 \frac{\Phi}{2}}## assuming all angles are real. Assume that all light is s polarized as the equations are precisely the same for p polarized light in terms of Fresnel coefficients.
Relevant Equations
Included in image below because I didn't want to have to LaTeX them all.
Finesse attempt pt 1.png

Finesse attempt pt2.png

I think I've got the numerator part figured out, but I'm really stuck on what to do with those negative phases in the last term and how to get this to all come together in the end. I feel like I must have made a mistake somewhere, but can't find it. Thanks in advance for the help!
 
Physics news on Phys.org
One error that I think I spotted is right by 4.14: In evaluating ## |terms|^2 ##, you need to multiply "terms" by its complex conjugate.
 
I want to find the solution to the integral ##\theta = \int_0^{\theta}\frac{du}{\sqrt{(c-u^2 +2u^3)}}## I can see that ##\frac{d^2u}{d\theta^2} = A +Bu+Cu^2## is a Weierstrass elliptic function, which can be generated from ##\Large(\normalsize\frac{du}{d\theta}\Large)\normalsize^2 = c-u^2 +2u^3## (A = 0, B=-1, C=3) So does this make my integral an elliptic integral? I haven't been able to find a table of integrals anywhere which contains an integral of this form so I'm a bit stuck. TerryW

Similar threads

Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
4
Views
565
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
8
Views
2K
Replies
8
Views
1K
Replies
6
Views
559