Help With Negative Phases in a Numerical Term

Blanchdog
Messages
56
Reaction score
22
Homework Statement
Verify that ##T^{tot}=\frac{n_2~cos \theta_2}{n_0~cos \theta_0}\frac{|t^{0\rightarrow1}|^2|t^{1\rightarrow2}|^2}{|e^{-ikd~cos\theta_1} - r^{0\leftarrow1}r^{1\rightarrow2}e^{ikd~cos\theta_1}|^2}## simplifies to ##T^{tot}=\frac{T^{max}}{1 + F~sin^2 \frac{\Phi}{2}}## assuming all angles are real. Assume that all light is s polarized as the equations are precisely the same for p polarized light in terms of Fresnel coefficients.
Relevant Equations
Included in image below because I didn't want to have to LaTeX them all.
Finesse attempt pt 1.png

Finesse attempt pt2.png

I think I've got the numerator part figured out, but I'm really stuck on what to do with those negative phases in the last term and how to get this to all come together in the end. I feel like I must have made a mistake somewhere, but can't find it. Thanks in advance for the help!
 
Physics news on Phys.org
One error that I think I spotted is right by 4.14: In evaluating ## |terms|^2 ##, you need to multiply "terms" by its complex conjugate.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top