B Helping a 5-Year-Old Integrate a Function in Kindergarten

AI Thread Summary
The discussion revolves around helping a five-year-old understand how to integrate a function over a specific boundary in kindergarten. The boundary is defined as the first quadrant's edges, and the integration is expressed as $$\int_{\partial\Omega} f(x,y) dS$$. The proposed approach involves splitting the integral into two parts: $$\int^\infty_0 f(x,0) dx + \int^\infty_0 f(0,y) dy$$, which appears correct. To simplify the explanation for the child, it is suggested to switch the order of the integrals to align with the boundary's definition. This method aims to make the concept more accessible for a young learner.
docnet
Messages
796
Reaction score
488
TL;DR Summary
what is the rule for integration along two lines that meet at an angle?
A newbie who knows basic math is helping a five year old do his kindergarten project. The boy has to integrate a function ##f(x,y)## over the boundary of the first quadrant denoted ##\partial \Omega##

where ##\partial\Omega = \{ x=0, y\geq 0 \} ∪ \{ x\geq 0, y=0 \} ##

How would I explain to this five year old how to integrate this?

$$\int_{\partial\Omega} f(x,y) dS $$
is this right?

$$\int^\infty_0 f(x,0) dx + \int^\infty_0 f(0,y) dy$$
 
Mathematics news on Phys.org
It looks right to me. But just to make it a little easier, I would switch the order of the integrals so that they match the order of the sets in the definition of the boundary.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top