csnsc14320
- 57
- 1
Homework Statement
Consider the vector space of square-integrable functions \psi(x,y,z) of (real space) position {x,y,z} where \psi vanishes at infinity in all directions. Define the inner product for this space to be
<\phi|\psi> = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi^* \psi dx dy dz
Show that the operator
\hat{L_z} = -i \hbar \left(x \frac{\delta}{\delta y} - y \frac{\delta}{\delta x}\right)
is a self-adjoint (Hermitian) operator on this space.
Homework Equations
The Attempt at a Solution
So I know that for an operator to be Hermitian that \hat{H} = \hat{H}^\dagger
so just starting from what I know...
<\hat{L} \phi|\psi> = <\phi|\hat{L}^\dagger|\psi>
<\hat{L} \phi|\psi> = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(-i \hbar \left(x \frac{\delta}{\delta y} - y \frac{\delta}{\delta x}\right) \phi \right)^* \psi dx dy dz = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} i \hbar \left(x \frac{\delta}{\delta y} - y \frac{\delta}{\delta x}\right) \phi^* \psi dx dy dz
and
<\phi|\hat{L}^\dagger|\psi> = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi^* \left(i \hbar \left(x \frac{\delta}{\delta y} - y \frac{\delta}{\delta x}\right)\psi \right) dx dy dz = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} i \hbar \left(x \frac{\delta}{\delta y} - y \frac{\delta}{\delta x}\right) \phi^* \psi dx dy dz
But I guess these are my two main questions:
For a non-matrix operator
\hat{L_z} = -i \hbar \left(x \frac{\delta}{\delta y} - y \frac{\delta}{\delta x}\right)
does
\hat{L_z}^\dagger = i \hbar \left(x \frac{\delta}{\delta y} - y \frac{\delta}{\delta x}\right)
??
and, can I move around my partials in the second equation to match that of my first or do I have to carry them out?
Thanks, and I'm sorry if what I said is complete junk seeing as how I'm not THAT strong in linear algebra... yet.