Checking convergence of Gaussian integrals

Click For Summary
The integral Z(λ) has been computed, confirming that it converges for λ in the range (0, +∞]. The discussion highlights the difficulty in separately integrating the exponential terms e^(-x^2/2) and e^(-λx^4/4!). A Taylor expansion approach is suggested for deriving expressions related to Z(λ), leading to the coefficients c_n in the series expansion. The participants explore various methods, including completing the square and using the ratio test for convergence, ultimately concluding that the radius of convergence is infinite. The conversation emphasizes the importance of careful integration and the use of gamma functions in evaluating integrals involving Gaussian terms.
  • #31
So you are prepared to write down ##c_n=...##.
 
Physics news on Phys.org
  • #32
mitochan said:
So you are prepared to write down ##c_n=...##.

Indeed (I would say it cannot be simplified any further)

\begin{equation*}
c_n = \frac{1}{\sqrt{2}} \sum_{n=0}^N\frac{(-)^n}{n!}\frac{1}{(4!)^n} (\sqrt{2})^{4n - 1} \frac{(4n)!}{2^{4n}(2n)!}
\end{equation*}
 
  • #33
No summation and take a look at factor ##2^n##.
 
  • #34
mitochan said:
No summation and take a look at factor ##2^n##.

Oops my bad. It can be simplified further

\begin{equation*}
c_n = \frac{1}{2} \sum_{n=0}^N\frac{(-)^n}{n!}\frac{1}{(4!)^n} \frac{(4n)!}{2^{3n}(2n)!}
\end{equation*}
 
  • #35
Do it more carefully.
 
  • #36
mitochan said:
Do it more carefully.

\begin{align*}
c_n &= \frac{1}{\sqrt{2}}\frac{(-)^n}{n!}\frac{1}{(4!)^n}(2)^{2n}\frac{1}{\sqrt{2}} \frac{(4n)!}{2^{4n}(2n)!} \\
&= \frac{1}{2} \frac{(-)^n}{n!}\frac{1}{(4!)^n} \frac{(4n)!}{2^{2n}(2n)!}
\end{align*}
 
  • #37
Thanks. I got c0=1 in post #21 and your result shows c0=1/2. I should appreciate it if you would check factor 2 missing or duplicating.
 
  • Like
Likes JD_PM
  • #38
Let me summarize what we are doing. At #21 you obtained (let me plug the solution of the integral)

\begin{align*}
c_n &= \frac{(-)^n}{\sqrt{2\pi}}\frac{2}{(4!)^n n!}\int_{0}^{+\infty}x^{4n} e^{-\frac{x^2}{2}}dx=\frac{(-)^n}{\sqrt{\pi}}\frac{2^{2n+1}}{(4!)^n n!}\int_{0}^{+\infty}x^{4n} e^{-x^2}dx \\
&= \frac{(-)^n 2^{2n+1}}{(4!)^n n!} (\sqrt{2})^{4n - 1} \frac{(4n)!}{2^{4n}(2n)!}.
\end{align*}

And I got

\begin{align*}
c_n &= \frac{1}{\sqrt{2}}\frac{(-)^n}{n!}\frac{1}{(4!)^n}(2)^{2n}\frac{1}{\sqrt{2}} \frac{(4n)!}{2^{4n}(2n)!} \\
&= \frac{1}{2} \frac{(-)^n}{n!}\frac{1}{(4!)^n} \frac{(4n)!}{2^{2n}(2n)!}
\end{align*}

It indeed seems I am missing a ##2## factor. I will recheck my computation.
 
  • #39
OK Got it, thanks for your patience! :smile:

JD_PM said:
Indeed (I would say it cannot be simplified any further)

\begin{equation*}
c_n = \frac{1}{\sqrt{2}} \sum_{n=0}^N\frac{(-)^n}{n!}\frac{1}{(4!)^n} (\sqrt{2})^{4n - 1} \frac{(4n)!}{2^{4n}(2n)!}
\end{equation*}

I dropped a two (i.e. we have ##\int_{-\infty}^{\infty} x^{4n} e^{-x^2/2} \, dx = 2 (\sqrt{2})^{4n - 1} \Gamma\left(2n+ \frac 1 2 \right)## and not ##\int_{-\infty}^{\infty} x^{4n} e^{-x^2/2} \, dx = (\sqrt{2})^{4n - 1} \Gamma\left(2n+ \frac 1 2 \right)##).

So now my answer matches yours i.e.

\begin{align*}
c_n &= \frac{2}{\sqrt{2}}\frac{(-)^n}{n!}\frac{1}{(4!)^n}(2)^{2n}\frac{1}{\sqrt{2}} \frac{(4n)!}{2^{4n}(2n)!} \\
&= \frac{(-)^n}{n!}\frac{1}{(4!)^n} \frac{(4n)!}{2^{2n}(2n)!}
\end{align*}
 
  • #40
Thanks. So we can proceed to investigate the series converges or diverges.
 
  • Love
Likes JD_PM
  • #41
mitochan said:
Thanks. So we can proceed to investigate the series converges or diverges.

I did this section some days ago via ratio test and got that the series was convergent, with radius of convergence ##R=\infty##

Do you mind if we advance or do you want me to show it explicitly?
 
  • #42
If you do not mind please show your result.
 
  • #43
mitochan said:
If you do not mind please show your result.

Using the ratio test we get

\begin{align*}
\lim_{n \to \infty} \left|\left( c_{n + 1} \frac{1}{c_n}\right)\right| &= \frac{(-)^{n+1}}{(n+1)!} \frac{1}{(4!)^{n+1}} \frac{\left[4(n+1) \right]!}{2^{2(n+1)}\left[ 2(n+1)\right]!} \\
&\times \frac{n!}{(-)^n}(4!)^n \frac{2^{2n}(2n)!}{(4n)!} \\
&= \lim_{n \to \infty} \left(\frac{1}{4! (n+1)}\right) \\
&= 0 < 1
\end{align*}

Hence ##R= + \infty##
 
  • #44
I calculated it
\frac{c_{n+1}}{c_n}=\frac{-1}{4*4!}\frac{(4n+4)(4n+3)(4n+2)(4n+1)}{(n+1)(2n+2)(2n+1)}=\frac{-1}{4!}\frac{(4n+3)(4n+1)}{(n+1)}=-\frac{2}{3}\frac{(1+3/4n)(1+1/4n)}{1+1/n}n
Please check our results.
 
  • Love
Likes JD_PM
  • #45
mitochan said:
I calculated it
\frac{c_{n+1}}{c_n}=\frac{-1}{4*4!}\frac{(4n+4)(4n+3)(4n+2)(4n+1)}{(n+1)(2n+2)(2n+1)}=\frac{-1}{4!}\frac{(4n+3)(4n+1)}{(n+1)}=-\frac{2}{3}\frac{(1+3/4n)(1+1/4n)}{1+1/n}n
Please check our results.

You are right, my bad! (I have to acknowledge that I rushed, my apologies).

Let me be more careful

\begin{align*}
c_{n + 1} \frac{1}{c_n} &= \frac{(4n+4)!}{(n+1)!(4!)^{n+1} 2^{2n+2}(2n+2)!}\times \\
&\times \frac{n! (4!)^n 2^{2n}(2n)!}{(4n)!} \\
&= \frac{(4n+3)(4n+1)}{24(n+1)} \\
&= \frac{n}{24}\left( \frac{(4+3/n)(4+1/n)}{(4+1/n)} \right)
\end{align*}

Where, to get to the first equality, I used factorial properties and simplified

$$(4n+4)! = (4n+4)(4n+3)(4n+2)(4n+1)(4n)!$$

$$(n+1)! = (n+1)(n)!, \qquad (2n+2)! = (2n+2)(2n+1)(2n)!$$

So the series diverges!

\begin{equation*}
\lim_{n\to \infty} \left( \frac{n}{24}\left( \frac{(4+3/n)(4+1/n)}{(4+1/n)} \right) \right) = \infty
\end{equation*}

And the radius of convergence is given by

$$R=0$$
 
  • #46
Regarding c). Let me check if I am on the right track

I would introduce a change of variables ##u := \lambda^{1/4} x## and expand one of the exponentials only so that ##Z(\lambda)## becomes

\begin{align*}
Z(\lambda) &= \frac{1}{\sqrt{2\pi}} \lambda^{-1/4} \int_{-\infty}^{\infty} du \exp\left( -\frac{u^2}{2!\sqrt{\lambda}}-\frac{1}{4!}u^4\right) \\
&= \frac{1}{\sqrt{2\pi}} \lambda^{-1/4} \sum_{n=0}^{\infty} \int_{-\infty}^{\infty} du e^{-u^4/4!} \left( \frac{-u^2}{2! \sqrt{\lambda}} \right)^n \frac{1}{n!}
\end{align*}Mmm so all would boil down to computing an integral of the form

\begin{align*}
\int_{-\infty}^{\infty} du \ e^{-u^4/4!} u^{2n}
\end{align*}
 
  • #47
Let me confirm you say

d_n=\frac{1}{\sqrt{2\pi}}\frac{(-)^n}{n!}\int_{-\infty}^{+\infty} e^{-\frac{u^4}{4!}}\frac{u^{2n}}{2^n} du

Why don't you try changing integral paremeters
\frac{u^4}{4!}=t
and do a similar job with b) ?
 
Last edited:
  • Like
Likes JD_PM
  • #48
@mitochan I see how to complete the exercise, thank you for your help and patience :smile:
 
  • Like
Likes mitochan

Similar threads

Replies
6
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 105 ·
4
Replies
105
Views
5K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K