mitochan
- 294
- 134
So you are prepared to write down ##c_n=...##.
mitochan said:So you are prepared to write down ##c_n=...##.
mitochan said:No summation and take a look at factor ##2^n##.
mitochan said:Do it more carefully.
JD_PM said:Indeed (I would say it cannot be simplified any further)
\begin{equation*}
c_n = \frac{1}{\sqrt{2}} \sum_{n=0}^N\frac{(-)^n}{n!}\frac{1}{(4!)^n} (\sqrt{2})^{4n - 1} \frac{(4n)!}{2^{4n}(2n)!}
\end{equation*}
mitochan said:Thanks. So we can proceed to investigate the series converges or diverges.
mitochan said:If you do not mind please show your result.
mitochan said:I calculated it
\frac{c_{n+1}}{c_n}=\frac{-1}{4*4!}\frac{(4n+4)(4n+3)(4n+2)(4n+1)}{(n+1)(2n+2)(2n+1)}=\frac{-1}{4!}\frac{(4n+3)(4n+1)}{(n+1)}=-\frac{2}{3}\frac{(1+3/4n)(1+1/4n)}{1+1/n}n
Please check our results.