Checking convergence of Gaussian integrals

  • Thread starter JD_PM
  • Start date
  • #1
1,019
152
Homework Statement:
Given


$$Z(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right)$$



a) What is the range of ##\lambda## such that ##Z(\lambda)## converges?



b) Find a compact expression for the series expansion of ##Z(\lambda)## for small ##\lambda## of the form



$$Z_N(\lambda) = \sum_{n=0}^N c_n \lambda^n$$



Is your series convergent? What is the radius of convergence?



c) Find a series expansion for ##Z(\lambda)## for ##\lambda >> 1## of the form



$$\hat Z_N(\lambda) = \sum_{n=0}^N d_n \lambda^{\left(2n+1 \right)/4}$$



Is this series convergent? For what value of ##N## will you obtain a value for ##\hat Z_N(0,1)## which is close to the exact value ##Z(0,1)##.
Relevant Equations:
N/A
a) First off, I computed the integral

\begin{align*}
Z(\lambda) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right) \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}\right) \exp\left( -\frac{\lambda}{4!}x^4\right) \\
&= \frac{1}{\sqrt{2\pi}} \sqrt{2\pi} \left( \frac{(24)^{1/4}}{2(\lambda)^{1/4}} \Gamma\left( \frac 1 4 \right) \right) = \frac{(24)^{1/4}}{2(\lambda)^{1/4}} \Gamma\left( \frac 1 4 \right)
\end{align*}

So I would say that the range of convergence is ##\lambda \in (0, +\infty]##, am I right?

For b) and c) I am quite confused. I have been trying to naively apply the series expansion for the exponential i.e.

$$Z(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \sum_{n=0}^{\infty}\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right)^n / n! \tag{*}$$

But I do not see how (*) could lead to get b) and c) expressions; could you please give me a hint :smile:

Thank you :biggrin:
 

Answers and Replies

  • #2
276
120
a) You cannot integral ##e^{-x^2}## term and ##e^{-x^4}## term separately.

b) Try Taylor expansion of Z by ##\lambda##. We can get ##Z^{(n)}(0)## easily.
 
  • #3
1,019
152
a) You cannot integral ##e^{-x^2}## term and ##e^{-x^4}## term separately.

I see. How should I approach it then? I have been looking at Gaussian integral formulas; this is the best I could find

frefefrerfaqd.png


None of these fit the given integral though.

b) Try Taylor expansion of Z by ##\lambda##. We can get ##Z^{(n)}(0)## easily.

\begin{align*}
Z(\lambda) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right) \\
&= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \sum_{n=0}^{\infty}\left( -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4\right)^n / n! \\
&\sim \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \left[+1 -\frac{x^2}{2!}-\frac{\lambda}{4!}x^4 \right]
\end{align*}

So I would say that

\begin{equation*}
Z^{(n)}(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \sum_{n=0}^{\infty}\left( -\frac{x^2}{2!}\right)^n / n!
\end{equation*}

But I do not see how the above will lead to get

$$Z^{(n)}(\lambda) = \sum_{n=0}^N c_n \lambda^n$$
 
  • #4
276
120
b) Try differentiating Z by ##\lambda##. You will get
[tex]Z^{(1)}(0)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} e^{-x^2/2}x^4(-\frac{1}{24} )dx[/tex]
[tex]Z^{(n)}(0)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} e^{-x^2/2}x^{4n}(-\frac{1}{24} )^n dx[/tex]
You can get these values from the formula you found for a).
 
  • #5
Dr Transport
Science Advisor
Gold Member
2,487
609
Why don't you complete the square and try again.
 
  • #6
1,019
152
b) Try differentiating Z by ##\lambda##. You will get
[tex]Z^{(1)}(0)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} e^{-x^2/2}x^4(-\frac{1}{24} )dx[/tex]
[tex]Z^{(n)}(0)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} e^{-x^2/2}x^{4n}(-\frac{1}{24} )^n dx[/tex]
You can get these values from the formula you found for a).

Alright, I get your results. Then we have

$$Z^{(n)}(\lambda)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty} e^{-x^2/2 -\lambda/4! x^4}x^{4n}\left(-\frac{1}{24} \right)^n dx \tag{**}$$

But how to get ##Z^{(n)}(\lambda) = \sum_{n=0}^N c_n \lambda^n## out of ##(**)##?

Why don't you complete the square and try again.

Should I try

$$Z(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left[ -\left( x^2\sqrt{\frac{\lambda}{4!}} +\frac{x}{\sqrt{2}}\right)^2 + 2x^3 \sqrt{\frac{\lambda}{4!2}} \right]$$

With a change of variables ##u := x^2\sqrt{\frac{\lambda}{4!}} +\frac{x}{\sqrt{2}}## ?
 
  • #7
Dr Transport
Science Advisor
Gold Member
2,487
609
I was thinking complete the square in terms of [itex] x^2 [/itex], not in terms of adding a [itex] x^3 [/itex] term but a constant term more like let [itex] y^2 = (a + bx^2)^2 [/itex]
 
  • #8
1,019
152
I was thinking complete the square in terms of [itex] x^2 [/itex], not in terms of adding a [itex] x^3 [/itex] term but a constant term more like let [itex] y^2 = (a + bx^2)^2 [/itex]

Then I am afraid I do see the form you have in mind... might you please give me the explicit form, so that I can think how to solve it? :smile:
 
  • #9
Dr Transport
Science Advisor
Gold Member
2,487
609
Then I am afraid I do see the form you have in mind... might you please give me the explicit form, so that I can think how to solve it? :smile:
your job, it's your homework. It took me about 5 lines to do by myself.
 
  • #10
1,019
152
your job, it's your homework. It took me about 5 lines to do by myself.

You are right, let me try again. Did you solve the following integral

$$Z(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left[ -\left( x^2\sqrt{\frac{\lambda}{4!}} + \sqrt{\frac{3}{\lambda}}\right)^2 +\frac{3}{\lambda} \right]$$

With a change of variables ##u := x^2\sqrt{\frac{\lambda}{4!}} + \sqrt{\frac{3}{\lambda}}## ?
 
  • #11
Dr Transport
Science Advisor
Gold Member
2,487
609
Exactly..... This should be tractable....
 
  • #12
309
161
Have you considered expanding ##e^{-\frac{\lambda x^4}{4!}}## and integrating term by term against ##e^{\frac{-x^2}{2}}##?
 
  • #13
Dr Transport
Science Advisor
Gold Member
2,487
609
The original form of the integral is exact, I found it in Gradshteyn and Ryzhik this afternoon after I started to look at the problem more closely.
 
  • #14
276
120
But I do not see how the above will lead to get
You seem to confuse ##Z_N## Taylor series up to order N with ##Z^{(n)}## derivatives. ##c_n## is made from ##Z^{(n)} (0)##.
 
  • #15
1,019
152
Exactly..... This should be tractable....

Alright so we have (I missed a 2 at #10)

$$Z(\lambda) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} dx \exp\left[ -\left( x^2\sqrt{\frac{\lambda}{4!}} + \sqrt{\frac{3}{2\lambda}}\right)^2 +\frac{3}{2\lambda} \right]$$

Labelling

$$a:= \sqrt{\frac{\lambda}{4!}}, \qquad b:= \sqrt{\frac{3}{2\lambda}}, \qquad c:= \frac{3}{2\lambda}$$

We end up with ##1 / \sqrt{2\pi} \exp(c) \int_{-\infty}^{\infty} \exp(-(ax^2 +b)^2) dx##. I thus got the form you suggested. Then I would use the change of variables ##y^2 = (ax^2 +b)^2 \iff y dy = 2ax(ax^2 +b)dx##.

But how to integrate

$$\frac{1}{\sqrt{2\pi}} e^c \int_{-\infty}^{\infty} e^{-y^2} \frac{1}{2a}\sqrt{\frac{a}{y-b}} dy$$

?
 
  • #16
Dr Transport
Science Advisor
Gold Member
2,487
609
If you expand the [itex] e^{-\frac{\lambda}{4!}x^4}[/itex] term, you do not have to complete the square to integrate the results term by term.
 
  • #17
1,019
152
Sorry @Dr Transport I am a bit confused; are you suggesting to abandon the 'complete the square' method and go for a different method (the one suggested by @Fred Wright ) ?
 
  • #18
1,019
152
@Dr Transport , @Fred Wright thank you, I start to understand! I get (let me drop out the normalization factor for now)

\begin{align*}
\int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!} - \frac{\lambda}{4!}x^4 \right) &= \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!} - \frac{\lambda}{4!}x^4 \right) = \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!} \right) \exp\left( - \frac{\lambda}{4!}x^4 \right) \\
&= \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!} \right) \left[ 1 - \frac{\lambda}{4!}x^4 + \frac{\lambda^2}{1152}x^8 - \ ... \ \left(- \frac{\lambda}{4!} x^4\right)^n \frac{1}{n!} \right] \\
&= \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!} \right) - \frac{\lambda}{4!}\int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!} \right)x^4 + \frac{\lambda^2}{1152}\int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!} \right)x^8 - \ ... \ + \left(-\frac{\lambda}{4!}\right)^n \int_{-\infty}^{\infty} dx \exp\left( -\frac{x^2}{2!} \right) \frac{x^{4n}}{n!}\\
&= \sqrt{2 \pi} - \frac{\lambda}{2^{5/2}} \sqrt{\pi} + \frac{35}{3 \times 2^{13/2}} \sqrt{\pi} \lambda^2 - \ ... \ \text{I do not see the pattern} \\
&= \sum_{n=0}^N c_n \lambda^n
\end{align*}

Where the coefficients ##c_n## are given, as @mitochan stated, by the derivatives ##Z^{(n)}##

Next for me to understand is the range of convergence of this integral. Maybe I need to see the result of the the n-th integral first. I suspect that it should look similar to what follows

kcodlksp^kvpsfk^s.png


But instead of ##x^{2n}## we have ##x^{4n}##.

Might you please shed some light on how to compute the n-th integral and then on the range of convergence of the general integral? :smile:
 
  • #19
vela
Staff Emeritus
Science Advisor
Homework Helper
Education Advisor
14,998
1,573
Might you please shed some light on how to compute the n-th integral and then on the range of convergence of the general integral?
I'm not sure exactly what you are looking for. You already have all the pieces in your post. (Don't multiply all the constants out as you seem to be doing.)

Use something like the ratio test to find the radius of convergence.
 
  • #20
Dr Transport
Science Advisor
Gold Member
2,487
609
[itex] 4n = 2(2n) [/itex] , think about it....
 
  • #21
276
120
@JD_PM You see the pattern
[tex]c_n=\frac{Z^{(n)}(0)}{n!}[/tex]
[tex]=\frac{(-)^n}{\sqrt{2\pi}}\frac{2}{(4!)^n n!}\int_{0}^{+\infty}x^{4n} e^{-\frac{x^2}{2}}dx=\frac{(-)^n}{\sqrt{\pi}}\frac{2^{2n+1}}{(4!)^n n!}\int_{0}^{+\infty}x^{4n} e^{-x^2}dx=...[/tex]
[tex]c_0=1[/tex]
 
Last edited:
  • #22
1,019
152
Thank you all! I've been thinking and I would say I got section b) Let me argue it

\begin{align*}
Z(\lambda) &= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} dx e^{-x^2/2!} e^{-\lambda x^4/4!} \\
&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} dx e^{-x^2/2!} \left( 1 - \frac{\lambda}{4!}x^4 + \ ... \ + \frac{(-)^n}{N!}\frac{\lambda^N}{(4!)^N}x^{4N} + ...\right) \\
&= \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} dx e^{-x^2/2!} \sum_{n=0}^N \frac{(-)^n}{n!}\frac{\lambda^n}{(4!)^n}x^{4n} \\
&= \frac{1}{\sqrt{2 \pi}} \sum_{n=0}^N \frac{(-)^n}{n!}\frac{\lambda^n}{(4!)^n} \left( \int_{-\infty}^{\infty} x^{4n} e^{-x^2/2} dx\right)
\end{align*}

Solving the integral (where I used the change of variables ##u:= x^2 / 2## and looked up the following integral ##\int_{0}^{\infty} e^{-n} x^{n-1} dx = \sqrt{n}##)

\begin{align*}
I= \int_{-\infty}^{\infty} x^{4n} e^{-x^2/2} dx &= 2\int_{0}^{\infty} x^{4n} e^{-x^2/2} dx \\
&= 2 \int_{0}^{\infty} (\sqrt{2t})^{4n} e^{-t} \frac{dt}{\sqrt{2t}} \\
&= 2 (\sqrt{2})^{4n - 1} \int_{0}^{\infty} t^{2n - 1/2} e^{-t} dt \\
&= (\sqrt{2})^{4n + 1} \sqrt{2n + \frac 1 2}
\end{align*}

We end up with

\begin{align*}
Z(\lambda) &= \frac{1}{\sqrt{2 \pi}} \sum_{n=0}^N \frac{(-)^n}{n!}\frac{1}{(4!)^n} (\sqrt{2})^{4n + 1} \sqrt{2n + \frac 1 2} \lambda^n \\
&= \sum_{n=0}^N c_n \lambda^n \\
\end{align*}

Mmm but I get ##c_0 = 1 / \sqrt{2 \pi}## instead of ##c_0 = 1##. So I guess I missed a ##\sqrt{2 \pi}## term when computing ##I## but I still do not see it though.

Use something like the ratio test to find the radius of convergence.

Thanks, using the ratio test I get that the integral is convergent and its radius of convergence ##R = \infty##. However, given that my computation of ##I## might be wrong, it may be wrong.

[tex]=\frac{(-)^n}{\sqrt{2\pi}}\frac{2}{(4!)^n n!}\int_{0}^{+\infty}x^{4n} e^{-\frac{x^2}{2}}dx=\frac{(-)^n}{\sqrt{\pi}}\frac{2^{2n+1}}{(4!)^n n!}\int_{0}^{+\infty}x^{4n} e^{-x^2}dx=...[/tex]

Thanks but might you shed some light on how did you go from the LHS to the RHS?
 
  • #23
276
120
You should take better care of integration
[tex]\int_0^{+\infty} t^{2n-\frac{1}{2}}e^{-t}dt[/tex].
By partial integration
[tex]\int_0^{+\infty} t^{2n-\frac{1}{2}}e^{-t}dt=[ -t^{2n-\frac{1}{2}}e^{-t}]_0^{+\infty} - (-)(2n-\frac{1}{2})\int_0^{+\infty}t^{2n-\frac{1}{2}-1}e^{-t}dt=(2n-\frac{1}{2})\int_0^{+\infty}t^{2n-\frac{1}{2}-1}e^{-t}dt[/tex]
[tex]= (2n-\frac{1}{2}) (2n-\frac{3}{2}) (2n-\frac{5}{2})...\frac{3}{2}\frac{1}{2} \int_0^{+\infty}t^{-\frac{1}{2}}e^{-t}dt=(2n-\frac{1}{2}) (2n-\frac{3}{2}) (2n-\frac{5}{2})...\frac{3}{2}\frac{1}{2}\ \ 2\int_0^{+\infty}e^{-t}d(\sqrt{t})[/tex]
 
Last edited:
  • #24
Dr Transport
Science Advisor
Gold Member
2,487
609
[itex] \int_0^\infty x^{2n}e^{-ax^2}dx = \frac{1*3*5...(2n-1)}{2^{n+1}a^n}\sqrt{\frac{\pi}{a}} [/itex]

figure it out from here [itex] n \to 2n[/itex]
 
  • #25
1,019
152
My apologies for the late reply

You should take better care of integration
[tex]\int_0^{+\infty} t^{2n-\frac{1}{2}}e^{-t}dt[/tex].
By partial integration
[tex]\int_0^{+\infty} t^{2n-\frac{1}{2}}e^{-t}dt=[ -t^{2n-\frac{1}{2}}e^{-t}]_0^{+\infty} - (-)(2n-\frac{1}{2})\int_0^{+\infty}t^{2n-\frac{1}{2}-1}e^{-t}dt=(2n-\frac{1}{2})\int_0^{+\infty}t^{2n-\frac{1}{2}-1}e^{-t}dt[/tex]
[tex]= (2n-\frac{1}{2}) (2n-\frac{3}{2}) (2n-\frac{5}{2})...\frac{3}{2}\frac{1}{2} \int_0^{+\infty}t^{-\frac{1}{2}}e^{-t}dt=(2n-\frac{1}{2}) (2n-\frac{3}{2}) (2n-\frac{5}{2})...\frac{3}{2}\frac{1}{2}\ \ 2\int_0^{+\infty}e^{-t}d(\sqrt{t})[/tex]

Indeed! I have noticed I made a mistake at #22. It is of course not a square root but a gamma function!


\begin{align*}
I= \int_{-\infty}^{\infty} x^{4n} e^{-x^2/2} dx &= 2\int_{0}^{\infty} x^{4n} e^{-x^2/2} dx \\
&= 2 \int_{0}^{\infty} (\sqrt{2t})^{4n} e^{-t} \frac{dt}{\sqrt{2t}} \\
&= 2 (\sqrt{2})^{4n - 1} \int_{0}^{\infty} t^{2n - 1/2} e^{-t} dt \\
&= (\sqrt{2})^{4n - 1} \Gamma \left( 2n + \frac 1 2 \right) \\
&= 2 (\sqrt{2})^{4n - 1} \frac{4n! \sqrt{\pi}}{2^{4n}(2n)!}
\end{align*}

This is how I got the last equality.

Hence we conclude that

\begin{align*}
Z(\lambda) &= \frac{1}{\sqrt{2 \pi}} \sum_{n=0}^N \frac{(-)^n}{n!}\frac{1}{(4!)^n} (\sqrt{2})^{4n - 1} \Gamma\left(2n + \frac 1 2 \right) \lambda^n \\
&= \sum_{n=0}^N c_n \lambda^n \\
\end{align*}
 

Related Threads on Checking convergence of Gaussian integrals

  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
2
Views
2K
  • Last Post
Replies
4
Views
6K
  • Last Post
Replies
4
Views
1K
  • Last Post
Replies
3
Views
3K
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
12
Views
1K
  • Last Post
Replies
8
Views
9K
  • Last Post
Replies
2
Views
696
Top