MHB Hey's questions at Yahoo Answers regarding solving for a limit of integration

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Integration Limit
Click For Summary
The discussion addresses two calculus problems involving integrals. The first problem requires finding the value of "b" in the equation ∫2x^4 dx = 1, leading to the conclusion that b = (7/2)^(1/5) > 1. The second problem involves determining "a" in the equation ∫2.3e^(1.4x) dx = 46, resulting in a = (5/7)ln(e^(28/5) - 28) < 4. The responses utilize the Fundamental Theorem of Calculus to derive the solutions. The thread encourages further calculus questions from participants.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Can someone please help me with these two math questions? *integrals*?

1) If b > 1 and ∫2x^4 dx = 1 (from b= b and a =1) what would be the value of "b"? how do I solve for b?

2) If a < 4 and ∫2.3e^(1.4x) dx = 46 (from b = 4 and a = a) what would be the value of "a"? how do I solve for a?

Here is a link to the questions:

Can someone please help me with these two math questions? *integrals*? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello hey,

1.) We are given:

$$2\int_1^b x^4\,dx=1$$ where $$1<b$$

Applying the anti-derivative form of the FTOC on the left side, we have:

$$\frac{2}{5}\left[x^4 \right]_1^b=1$$

Multiply through by $$\frac{5}{2}$$ and complete the FTOC:

$$b^5-1=\frac{5}{2}$$

Add through by $1$, and take the fifth root of both sides:

$$b=\left(\frac{7}{2} \right)^{\frac{1}{5}}>1$$

2.) We are given

$$2.3\int_a^4 e^{1.4x}\,dx=46$$ where $$a<4$$

Applying the anti-derivative form of the FTOC on the left side, we have:

$$\frac{23}{14}\left[e^{1.4x} \right]_a^4=46$$

Multiply through by $$\frac{14}{23}$$ and complete the FTOC:

$$e^{5.6}-e^{1.4a}=28$$

Arrange with the term containing $a$ on the left, and everything else on the right:

$$e^{1.4a}=e^{5.6}-28$$

Convert from exponential to logarithmic form and then divide through by $1.4$:

$$a=\frac{5}{7}\ln\left(e^{\frac{28}{5}}-28 \right)<4$$

I have used fractions rather than decimals equivalents. I just prefer this notation.

To hey and any other guests viewing this topic, I invite and encourage you to post other calculus questions here in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
Replies
1
Views
3K
  • · Replies 6 ·
Replies
6
Views
5K