MHB Hey's questions at Yahoo Answers regarding solving for a limit of integration

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Integration Limit
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

Can someone please help me with these two math questions? *integrals*?

1) If b > 1 and ∫2x^4 dx = 1 (from b= b and a =1) what would be the value of "b"? how do I solve for b?

2) If a < 4 and ∫2.3e^(1.4x) dx = 46 (from b = 4 and a = a) what would be the value of "a"? how do I solve for a?

Here is a link to the questions:

Can someone please help me with these two math questions? *integrals*? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello hey,

1.) We are given:

$$2\int_1^b x^4\,dx=1$$ where $$1<b$$

Applying the anti-derivative form of the FTOC on the left side, we have:

$$\frac{2}{5}\left[x^4 \right]_1^b=1$$

Multiply through by $$\frac{5}{2}$$ and complete the FTOC:

$$b^5-1=\frac{5}{2}$$

Add through by $1$, and take the fifth root of both sides:

$$b=\left(\frac{7}{2} \right)^{\frac{1}{5}}>1$$

2.) We are given

$$2.3\int_a^4 e^{1.4x}\,dx=46$$ where $$a<4$$

Applying the anti-derivative form of the FTOC on the left side, we have:

$$\frac{23}{14}\left[e^{1.4x} \right]_a^4=46$$

Multiply through by $$\frac{14}{23}$$ and complete the FTOC:

$$e^{5.6}-e^{1.4a}=28$$

Arrange with the term containing $a$ on the left, and everything else on the right:

$$e^{1.4a}=e^{5.6}-28$$

Convert from exponential to logarithmic form and then divide through by $1.4$:

$$a=\frac{5}{7}\ln\left(e^{\frac{28}{5}}-28 \right)<4$$

I have used fractions rather than decimals equivalents. I just prefer this notation.

To hey and any other guests viewing this topic, I invite and encourage you to post other calculus questions here in our http://www.mathhelpboards.com/f10/ forum.

Best Regards,

Mark.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top