Higgs boson re-discovery from a CERN dataset (for a project)

omerel
Messages
1
Reaction score
0
Homework Statement
Seminar Project
Relevant Equations
H -> ZZ -> 4l (muons)
Hi everyone!
I'm working on a seminar project on elementary particles, and I'm supposed to introduce the LHC and rediscover the Higgs boson from a dataset I got from CERN open source.
I don't understand how am I supposed to discover the gap (in the invariant mass diagram) around the Higgs boson mass (125 GeV).
I've watched CERN's official video on the Higgs discovery (Higgs boson decay to two photons), and several code implementations relevant to my problem (H->ZZ->4l) and couldn't understand the idea of how you actually see the gap around 125 GeV?
When I plot the histogram of Z boson invariant masses, I do not see anything unusual.
For your convenience, I attached two of my histograms- one for Z boson pairs invariant mass (i.e came from the same decay) and the second is the invariant mass of a single Z boson invariant mass. The invariant mass is in GeV units. pairs.PNG
 

Attachments

  • single.PNG
    single.PNG
    4.7 KB · Views: 137
Physics news on Phys.org
What is this gap you are talking about?

What is the dataset you are looking at? Is it big enough to see the Higgs? The Z peak seems awfully small.
 
Can you provide more information on how you analyzed the data? E.g. cuts used and so on. Also provide a link to the dataset

One Z is off shell so you can not write "invariant mass of two Z" here
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Replies
13
Views
4K
Replies
11
Views
3K
Replies
4
Views
2K
Replies
8
Views
2K
Replies
7
Views
3K
Replies
0
Views
3K
Replies
17
Views
6K
Replies
19
Views
3K
Back
Top