Homogenous differential equation

Click For Summary
SUMMARY

The discussion centers on solving homogeneous differential equations, specifically the equation $$(x+y)^2 \frac{\mathrm{d} y}{\mathrm{d} x}=r^2$$. Participants clarify that a function is homogeneous of order -2, which prevents it from being transformed into a separable equation using the substitution $$\frac{y}{x}=z(x)$$. Instead, they suggest using the substitution $$u = x + y$$ for simplification. The constant $$r^2$$ is confirmed to be a constant, not a function of $$x$$ or $$y$$.

PREREQUISITES
  • Understanding of homogeneous functions and their properties
  • Familiarity with differential equations and their classifications
  • Knowledge of substitution methods in solving differential equations
  • Basic calculus concepts, including derivatives and separable equations
NEXT STEPS
  • Study the properties of homogeneous functions in detail
  • Learn about different methods for solving differential equations, including substitution techniques
  • Explore the concept of order in differential equations and its implications
  • Practice solving various types of differential equations, focusing on homogeneous cases
USEFUL FOR

Mathematicians, engineering students, and anyone studying differential equations, particularly those interested in the properties and solutions of homogeneous functions.

etf
Messages
179
Reaction score
2
My book says:
"Differential equations of the form $$\frac{\mathrm{d} y}{\mathrm{d} x}=f(x,y)$$, where $$f(x,y)$$ is homogenous function (function is homogenous if $$f(tx,ty)=t^k f(x,y)$$) can be written in form $$\frac{\mathrm{d} y}{\mathrm{d} x}=F(\frac{y}{x})$$ and transformed to differential equation with separate variables using substitution $$\frac{y}{x}=z(x)$$."
Here is my differential equation and how I tried to solve it:
$$(x+y)^2 \frac{\mathrm{d} y}{\mathrm{d} x}=r^2$$
$$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{r^2}{(x+y)^2}$$
$$f(x,y)=\frac{r^2}{(x+y)^2}$$
$$\rightarrow f(tx,ty)=\frac{r^2}{(tx+ty)^2}=\frac{r^2}{(t(x+y))^2}=\frac{r^2}{t^2(x+y)^2}=t^{-2}\frac{r^2}{(x+y)^2}$$ so our function is homogenous and we can solve our diff. eq., according to my book, using substitution $$\frac{y}{x}=z(x)$$
$$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{r^2}{(x+y)^2}=\frac{r^2}{(x(1+\frac{y}{x}))^2}=\frac{r^2}{x^2(1+\frac{y}{x})^2}$$
Our equation now becomes $$z+x\frac{\mathrm{d} z}{\mathrm{d} x}=\frac{r^2}{x^2(1+z)^2}$$ but this is not diff. eq. with separate variables? :confused:
 
Last edited:
Physics news on Phys.org
etf said:
My book says:
"Differential equations of the form $$\frac{\mathrm{d} y}{\mathrm{d} x}=f(x,y)$$, where $$f(x,y)$$ is homogenous function (function is homogenous if $$f(tx,ty)=t^k f(x,y)$$) can be written in form $$\frac{\mathrm{d} y}{\mathrm{d} x}=F(\frac{y}{x})$$ and transformed to differential equation with separate variables using substitution $$\frac{y}{x}=z(x)$$."
This is incorrect. A differential equation is "homogeneous of order k" if f(tx, ty)= t^k f(x, y). A differential equation that is homogenous of order 0 can be written as a separable equation in the variable z= y/x.

Here is my differential equation and how I tried to solve it:
$$(x+y)^2 \frac{\mathrm{d} y}{\mathrm{d} x}=r^2$$
$$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{r^2}{(x+y)^2}$$
$$f(x,y)=\frac{r^2}{(x+y)^2}$$
$$\rightarrow f(tx,ty)=\frac{r^2}{(tx+ty)^2}=\frac{r^2}{(t(x+y))^2}=\frac{r^2}{t^2(x+y)^2}=t^{-2}\frac{r^2}{(x+y)^2}$$ so our function is homogenous
No. "Homogeneous", with no adjective, means "homogeneous of degree 0". That is, f(tx, ty)= f(x, y) for any t. That is the condition that we can write the problem as a differential equation in z= y/x. Your equation is homogeneous of order -2 so cannot be written that way.

and we can solve our diff. eq., according to my book, using substitution $$\frac{y}{x}=z(x)$$
$$\frac{\mathrm{d} y}{\mathrm{d} x}=\frac{r^2}{(x+y)^2}=\frac{r^2}{(x(1+\frac{y}{x}))^2}=\frac{r^2}{x^2(1+\frac{y}{x})^2}$$
Our equation now becomes $$z+x\frac{\mathrm{d} z}{\mathrm{d} x}=\frac{r^2}{x^2(1+z)^2}$$ but this is not diff. eq. with separate variables? :confused:
 
  • Like
Likes   Reactions: 1 person
Well, I am not that familiar with the theory, but you say yourself that you need to write your equation on the form
\begin{equation*}
\frac{dy}{dx} = F(\frac{y}{x}).
\end{equation*}
Does this seem doable?

That said, my first instinct would instead be to try the substitution ##u = x + y##.
 
  • Like
Likes   Reactions: 1 person
etf said:
My book says:
"Differential equations of the form $$\frac{\mathrm{d} y}{\mathrm{d} x}=f(x,y)$$, where $$f(x,y)$$ is homogenous function (function is homogenous if $$f(tx,ty)=t^k f(x,y)$$) can be written in form $$\frac{\mathrm{d} y}{\mathrm{d} x}=F(\frac{y}{x})$$ and transformed to differential equation with separate variables using substitution $$\frac{y}{x}=z(x)$$."
Here is my differential equation and how I tried to solve it:
$$(x+y)^2 \frac{\mathrm{d} y}{\mathrm{d} x}=r^2$$

And what is ##r^2##? Just any constant or does it happen to be ##x^2+y^2##? That would make your DE homogeneous.
 
Thanks for replies. I solved it using substitution x+y=z(x). Btw r^2 is constant.
 

Similar threads

  • · Replies 105 ·
4
Replies
105
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
5
Views
2K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K