Honeycomb Structures and Resolution in FEM

Click For Summary
SUMMARY

This discussion focuses on the implementation of wave propagation in honeycomb structures using the Finite Element Method (FEM) in Python. The user, an engineering student, is attempting to visualize dispersion curves using a custom code that incorporates mass and stiffness matrices. Despite following the Bloch-Floquet method, the results obtained are inconsistent when compared to established research. The user seeks guidance on improving the accuracy of their FEM implementation.

PREREQUISITES
  • Understanding of Finite Element Method (FEM)
  • Familiarity with Bloch's theory in solid mechanics
  • Proficiency in Python programming, particularly with libraries like NumPy and Matplotlib
  • Knowledge of wave propagation in periodic structures
NEXT STEPS
  • Review the implementation of the Bloch-Floquet method in FEM for periodic structures
  • Learn about eigenvalue problems in the context of structural dynamics
  • Explore advanced visualization techniques for dispersion curves using Matplotlib
  • Investigate common pitfalls in FEM simulations and how to troubleshoot them
USEFUL FOR

This discussion is beneficial for engineering students, researchers in mechanics, and practitioners involved in computational modeling of periodic structures using FEM.

ShashankanB
Messages
1
Reaction score
0
TL;DR
I struggle to implement the perturbation of a wave in a Honeycomb structure : i can't have the results which can be find on internet.
Hi,
I am a engineering student and I am in apprenticeship with a mechanics lab : I am studying about Honeycomb propagation and periodic structures. I hadn't have any courses in FEM or in Bloch's theory, I've done all by myself : but there is the problem, i didn't practice or use viable courses. I tired to implement the propagation in 2D of a wave in these honeycombs, with the following code in Python :

[CODE lang="python" title="Honeycomb wave propagation (function names are in french)"]from Matrices import mass_matrix,stiffness_matrix
from Maillage import Elements_decoupe_unique
from Maillage import Affiche_elements_decoupe as AED
import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import eig

rayon = 0.01
element = Elements_decoupe_unique(2, 1, rayon, opt = False, offset = True)
periode = np.array([element[5]] + [element[7]] + [element[3]] + [element[6]] + [element[4]])
nb = len(periode) #Nombre d'elements
nn = nb + 1 #Nombre de noeuds

#Initialisation
h = rayon*np.array([0.5,0.5,0.5,0.5,1])
K = np.zeros((2*len(h)+2,2*len(h)+2)) #Matrice de Raideur
F = np.zeros(2*len(h)+2) #Matrice des forces
M = np.zeros((2*len(h)+2,2*len(h)+2)) #Matrice des masses

L = np.sqrt((periode[0,1] - periode[1,1])[0] ** 2 + (periode[0,1] - periode[1,1])[1] ** 2)
#Valeurs tabulées
E = 71e9
I_zz = 1e-6
r = 2700
s = 1e-4

for i in range(len(h)):
K[i*2 : 2*i + 4,2*i : 2*i + 4] += stiffness_matrix(E,I_zz,h)
M[i*2 : 2*i + 4,2*i : 2*i + 4] += mass_matrix(r,s,h)

def Porpagation2D():
"""
Effectue la méthode de Bloch-Floquet sur un maillage hexagonal avec une perturbation bidimensionnelle

Argument :

Retoune:
- plot : affichage de la courbe de dispersion

"""
a = h[-1]
t0,L0 = 0.005, rayon
w0 = np.pi**2*t0/L0**2*np.sqrt(E/(12*r))

# Reciprocal lattice basis vectors
b1 = (2 * np.pi / a) * np.array([1, -1 / np.sqrt(3)])
b2 = (2 * np.pi / a) * np.array([0, 2 / np.sqrt(3)])

# Define high-symmetry points in reduced coordinates
P_G = np.array([0, 0])
P_K = np.array([2/3, 1/3])
P_M = np.array([1/2, 0])

# Chemin de la zone de Brillouin
num_points = 100
path = np.vstack([
np.linspace(P_G, P_K, num_points),
np.linspace(P_K, P_M, num_points),
np.linspace(P_M, P_G, num_points)
])


kx_ky = path @ np.array([b1, b2])
omega_values = np.zeros((len(kx_ky), 2 * nn), dtype=complex)
for i,(k1, k2) in enumerate(kx_ky):
# Construct the transformation matrix T
T = np.eye(2 * nn, dtype = complex)

T[0,2] = np.exp(1j*(k1*L))
T[1,3] = np.exp(1j*(k1*L))
T[2,0] = np.exp(-1j*(k1*L))
T[3,1] = np.exp(-1j*(k1*L))

T[4,6] = np.exp(1j*(k2*L*np.sqrt(3)/2 + k1*L/2))
T[5,7] = np.exp(1j*(k2*L*np.sqrt(3)/2 + k1*L/2))
T[6,4] = np.exp(-1j*(k2*L*np.sqrt(3)/2 + k1*L/2))
T[7,5] = np.exp(-1j*(k2*L*np.sqrt(3)/2 + k1*L/2))

K_transformed = np.dot(np.conj(T).T, np.dot(K, T))
M_transformed = np.dot(np.conj(T).T, np.dot(M, T))

eigenvalues, _ = eig(K_transformed, M_transformed)
omega_values[i, :] = np.sqrt(eigenvalues)/w0

distances = np.sqrt(np.sum(np.diff(kx_ky, axis=0) ** 2, axis=1))
k_path = np.insert(np.cumsum(distances), 0, 0)
for i in range(omega_values.shape[1]):
plt.plot(k_path, np.real(omega_values[:, i]),'.', lw = 0, ms = 5, c = 'black')

plt.grid()
plt.xlabel(r"Vecteur d'onde réduit (k) $m^{-1}$")
plt.xticks([0, k_path[num_points-1], k_path[2*num_points-1], k_path[-1]], ["Γ", "K", "M", "Γ"])
plt.ylabel(r"Pulsation temporelle normalisée ($\Omega$) rad/s ")
plt.title("Courbe de dispersion")
plt.show()

Porpagation2D()[/CODE]

But the result is absurd (left, mine and right from a research paper):
1741268410707.png
VS
1741268425774.png

If you have any suggestion or help, I am thanking you in advance,

P.S. : Please don't mind any English errors.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K