A Hooke's law, Bertrand's theorem and closed orbits

AI Thread Summary
Bertrand's Theorem states that only forces leading to closed orbits are those described by Hooke's law and the attractive inverse square law. The discussion focuses on demonstrating that Hooke's law, represented by the force equation f = -k r, results in closed orbits through the derived trajectory equation. The analysis reveals that the motion can be understood as three simple harmonic motions (SHM) along different axes, which are periodic and thus yield a closed orbit. The periodic nature of these oscillations is independent of amplitude, reinforcing the closed orbit concept. The conversation concludes with a reference to a visual representation of SHM orbits, emphasizing their elliptical nature.
Kashmir
Messages
466
Reaction score
74
Bertrand's Theorem says : the only forces whose bounded orbits imply closed orbits are the Hooke's law and the attractive inverse square force.

I'm looking at the hookes law ##f=-k r## and try to see explicitly that the orbit is indeed closed.

I use the orbit equation ##\frac{d^{2} u}{d \theta^{2}}+u=\frac{-m}{l^{2} u^{2}} f\left(\frac{1}{u}\right)## with the force given as ##f=-k r## ,therefore I get ##\frac{d^{2} u}{d \theta^{2}}+u=+\frac{mk}{l^{2} u 3}## as the equation defining the trajectory.

However neither can I solve this nor can I see that the equation implies a closed orbit.

Can you please help me.
 
Physics news on Phys.org
Kashmir said:
I'm looking at the hookes law ##f=-k r## and try to see explicitly that the orbit is indeed closed.

Hooke's law gives you harmonic oscillation along each axis in the orbital plane, with a period independent of max. amplitude, thus the same for both axes and equal to the orbital period:
https://en.wikipedia.org/wiki/Harmonic_oscillator
 
A.T. said:
Hooke's law gives you harmonic oscillation along each axis in the orbital plane, with a period independent of max. amplitude, thus the same for both axes and equal to the orbital period:
https://en.wikipedia.org/wiki/Harmonic_oscillator
Thank you. I got it. We've three SHM along three axis which are periodic, hence a closed orbit.
 
Kashmir said:
We've three SHM along three axis which are periodic, hence a closed orbit.

You can see the SHM orbit on the pound note below, where they placed the sun in the middle of an elliptical orbit. Newton doesn't look too happy about this.

One%2BPound%2BNote%2Bwith%2BIsaac%2BNewton.jpg
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top