How Can Fermat's Principle Prove the Second Law of Reflection?

Click For Summary
SUMMARY

This discussion focuses on proving the second law of reflection using Fermat's principle, which states that light follows the path of least time. The second law asserts that the incident ray, reflected ray, and normal ray all lie in a single plane. The user attempted to apply the three-variable Pythagorean theorem and calculus to derive the minimum time path but encountered issues with the derivative of the time function. The conversation highlights the importance of clear diagrams and correct labeling in mathematical proofs.

PREREQUISITES
  • Understanding of Fermat's principle in optics
  • Knowledge of the second law of reflection
  • Proficiency in calculus, particularly derivatives
  • Familiarity with the Pythagorean theorem in multiple dimensions
NEXT STEPS
  • Review the application of Fermat's principle in optics
  • Study the geometric interpretation of the second law of reflection
  • Learn about the implications of derivatives in optimization problems
  • Explore simpler geometrical configurations for proving optical laws
USEFUL FOR

Students and educators in physics, particularly those focusing on optics, as well as mathematicians interested in the application of calculus to physical principles.

deltafee
Messages
10
Reaction score
0
Hi, I am trying to prove the second law of reflection using fermat's principle and I am not entirely sure how to start it.
By the way the second law of reflection is: The incident ray, reflect ray and normal ray all lie in a single plane.
 
Last edited:
Science news on Phys.org
Fermat's principle - light follows path of least time?
You do it pretty much the same way as you would for the first rule and for Snell's law... fix a point that the incedent ray passes through, and another that the reflected ray passes through, but vary the point of reflection (constrained by the first law).
 
Yeah I used the three variable Pythagorean Theorem and than took the derivative and than placed values for x and y so I could graph it.

Here's the typed worksheet: https://dl.dropbox.com/u/77575413/F.pdf

on the second page I have the graphs of Time and the derivative of Time and as you can see I don't get a minimum in the derivative of time graph, but I get a minimum on the time graph. So I am really not sure what I did wrong.

Oh by the way just to make it easier to see the graph I left the value of c out from the equation.
 
Last edited by a moderator:
It looks like at least the derivative is wrong.
You realize you can check your calculations against the actual answer because you know it already right?
I don't get a minimum in the derivative of time graph, but I get a minimum on the time graph.
example: y=x^2 has a minimum, but the derivative function y'=2x does not have a minimum.

I don't follow what you have done though - i.e.
The diagram at the top of the first page has no labels.

That 1/2c looks a little suspect. Comes from the 2d in the first line - but since there are no labels on the diagram I have no idea if it is OK or not.

I see you have written:$$\frac{1}{2c}\left [ \frac{10+z}{\sqrt{58}+z^2}+\frac{z-6}{\sqrt{106}+(20-z)^2} \right ]$$ for both ##T## and ##T^\prime##.
(Last equation page 1, and top pf page 3).

I'm surprised you didn't try for a simpler geometry.
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 5 ·
Replies
5
Views
553
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K