MHB How can I factorize this polynomial?

AI Thread Summary
The discussion focuses on factorizing the polynomial expression 6a² - 3ab - 11ac + 12ad - 18b² + 36bc - 45bd - 10c² + 27cd - 18d². A proposed factorized form is (Aa + Bb + Cc + Dd)(Wa + Xb + Yc + Zd), and various approaches to decomposition are explored. The user successfully identifies factors for specific parts of the polynomial, such as (2a - 5c)(3a + 2c) and (3a - 6b)(2a + 3b). There is also discussion about potential sign errors and strategies for selecting which trinomial to factor first. The conversation emphasizes the complexity of polynomial factorization and the need for careful comparison of terms.
bergausstein
Messages
191
Reaction score
0
Decompose

$$6a^2-3ab-11ac+12ad-18b^2+36bc-45bd-10c^2+27cd-18d^2$$

I noticed that the factorized form would be $$(Aa+Bb+Cc+Dd)(Wa + Xb + Yc + Zd)$$

Which is similar to the factorized form $$(Aa+Bb+Cc)(Wa+Xb+Yc)$$

$$Yc(Aa+Bb)+Cc(Wa+Xb) = c(CX+BY)$$

Is there a way that I can somehow use this to decompose the original polynomial expression? I'm stuck. I need help.
 
Mathematics news on Phys.org
bergausstein said:
Decompose

$$6a^2-3ab-11ac+12ad-18b^2+36bc-45bd-10c^2+27cd-18d^2$$

I noticed that the factorized form would be $$(Aa+Bb+Cc+Dd)(Wa + Xb + Yc + Zd)$$

Which is similar to the factorized form $$(Aa+Bb+Cc)(Wa+Xb+Yc)$$

$$Yc(Aa+Bb)+Cc(Wa+Xb) = c(CX+BY)$$

Is there a way that I can somehow use this to decompose the original polynomial expression? I'm stuck. I need help.

If from the above we take (Aa+Bb)(Wa+Xb) we get quadratic polynomial in ab so one

let us see for a c because coefficient of $^2$, $c^2$ and $ac$ do not have any constant as a common factor

we get $6a^2-11ac - 10c^2 = 6a^2-15ac + 4ac = 10c^2 = 3a(2a-5s) + 2c(2a-5s) = (2a-5c)(3a + 2c)$

so we get factor of the form(2a+Ab-5c +Bd)(3a+Cb+2c + Dd)

taking $6a^2-3ab -18b^2 = 3(2a^2 - ab - 6b^2) = 3(2a+3b)(a-2b) = (3a - 6b)(2a+3b)$

comparing above we get A = 3 and C = 6

so we get factor (2a+3b-5c +Bd)(3a+6b+2c + Dd)

now take trinoomal of a d

$6a^2 +12ad-18d^2 = 6(a^2+2ad-3d^2)= 6(a+3d)(a-d) = (2a+6d)(3a-3d)$

comparing with above we have B= 6 and D = -3 and hence facfored as = (2a+3b-5c +6d)(3a+6b+2c -3d)
you can multiply and check it out.
 
kaliprasad said:
If from the above we take (Aa+Bb)(Wa+Xb) we get quadratic polynomial in ab so one

let us see for a c because coefficient of $^2$, $c^2$ and $ac$ do not have any constant as a common factor

we get $6a^2-11ac - 10c^2 = 6a^2-15ac + 4ac = 10c^2 = 3a(2a-5s) + 2c(2a-5s) = (2a-5c)(3a + 2c)$

so we get factor of the form(2a+Ab-5c +Bd)(3a+Cb+2c + Dd)

taking $6a^2-3ab -18b^2 = 3(2a^2 - ab - 6b^2) = 3(2a+3b)(a-2b) = (3a - 6b)(2a+3b)$

comparing above we get A = 3 and C = 6

so we get factor (2a+3b-5c +Bd)(3a+6b+2c + Dd)

now take trinoomal of a d

$6a^2 +12ad-18d^2 = 6(a^2+2ad-3d^2)= 6(a+3d)(a-d) = (2a+6d)(3a-3d)$

comparing with above we have B= 6 and D = -3 and hence facfored as = (2a+3b-5c +6d)(3a+6b+2c -3d)
you can multiply and check it out.

Hi kaliprasad! It did check out. But I think you made a sign error $(3a-6b+2c-3d)$ instead of $(3a+6b+2c-3d)$. How do you decide which trinomial to take first? And what if I choose $-10c^2+27cd-18d^2$? And where do you compare it to after factoring?
 
Last edited:
bergausstein said:
Hi kaliprasad! It did check out. But I think you made a sign error $(3a-6b+2c-3d)$ instead of $(3a+6b+2c-3d)$. How do you decide which trinomial to take first? And what if I choose $-10c^2+27cd-18d^2$? And where do you compare it to after factoring?

you are right

taking 6a2−3ab−18b2=3(2a2−ab−6b2)=3(2a+3b)(a−2b)=(3a−6b)(2a+3b)6a2−3ab−18b2=3(2a2−ab−6b2)=3(2a+3b)(a−2b)=(3a−6b)(2a+3b)

comparing above we get A = 3 and C = 6

so we get factor (2a+3b-5c +Bd)(3a+6b+2c + Dd)

it should be

A = 3 and B= -6 hence your result
 
bergausstein said:
Hi kaliprasad! It did check out. But I think you made a sign error $(3a-6b+2c-3d)$ instead of $(3a+6b+2c-3d)$. How do you decide which trinomial to take first? And what if I choose $-10c^2+27cd-18d^2$? And where do you compare it to after factoring?

if you choose $-10c^2+27cd-18d^2$ you get
$-10c^2+15cd + 12cd - 18d^2= -5c(2c-3d) + 6d(2c-3d) = (2c-3d)(6d-5c) $

then taking combination of polynomial of b c or bd and so on
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top