MHB How can I show b^2 > 24c in a cubic with one maximum and one minimum?

camrocker
Messages
5
Reaction score
0
Hello, been thinking on this one for a little while, and can't seem to figure it out. Problem statement is:

The cubic curve y = 8x^3 + bx^2 + cx + d has two distinct points P and Q, where the gradient is zero.

Show that b^2 > 24c.

It seems simple enough, but I can't logic it out. This equation has two distinct points where gradient is zero, so one maximum and one minimum, right? I played around with an online graphing calculator and saw that b^2 > 24c for two points of zero gradient is in fact true, but don't see how to mathematically prove/show this.

What direction should I be taking to show that b^2 > 24c? Thanks for any tips!
 
Mathematics news on Phys.org
The gradient of the curve $$y = 8x^3 + bx^2 + cx + d$$ is $$y' = 24x^2 + 2bx + c$$

Since it is a second order polynomial it has two roots when the discriminant $\Delta$ is $>0$.

$$\Delta>0 \Rightarrow 4b^2-4 \cdot 24 c>0 \Rightarrow 4b^2>4 \cdot 24c \Rightarrow b^2>24c$$
 
mathmari said:
The gradient of the curve $$y = 8x^3 + bx^2 + cx + d$$ is $$y' = 24x^2 + 2bx + c$$

Since it is a second order polynomial it has two roots when the discriminant $\Delta$ is $>0$.

$$\Delta>0 \Rightarrow 4b^2-4 \cdot 24 c>0 \Rightarrow 4b^2>4 \cdot 24c \Rightarrow b^2>24c$$

Thank you so much! I finally got to the discriminant point some time after posting this, but I tossed it aside because I forgot that b was 2b not just b, so I got b^2 > 96c. Thanks for the help!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top