How Can I Simplify Real Integration Calculations?

Click For Summary

Discussion Overview

The discussion revolves around methods for simplifying real integration calculations, specifically focusing on two integrals: one from 0 to 2π involving a sine function, and another from negative to positive infinity involving a rational function. Participants share their approaches and calculations, expressing uncertainty about the final answers.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents a detailed attempt to solve the integral ∫_0^(2π) dx/(13 - 5*sin(x)), using a substitution method involving u = tan(x/2) and expressing the integral in terms of u.
  • Another participant agrees with the initial steps of the second integral ∫_-∞^∞ dx/((x^2) + 4)^2, providing a breakdown of the integration process and introducing the use of trigonometric identities.
  • Some participants express uncertainty about the final answers for both integrals, particularly the first one, indicating a lack of consensus on the results.
  • There is a repeated inquiry about the final answer for the first integral, highlighting the ongoing uncertainty in the discussion.

Areas of Agreement / Disagreement

Participants generally agree on the initial steps of the integration processes but do not reach a consensus on the final answers for the integrals. Multiple competing views and methods are presented, particularly regarding the first integral.

Contextual Notes

The discussion includes complex substitutions and transformations, with some steps remaining unresolved or unclear. Participants do not fully agree on the correctness of the methods or the final results.

aruwin
Messages
204
Reaction score
0
Hi.
Is there a short way to calculate real integration? I tried it but it looks so tedious. I attached the question so please refer to that. I am stuck with no.1, by the way.
Here is my attempt:

∫_0^(2π) dx/(13 - 5*sin(x))


let u = tan(x/2) which means x/2 = arctan(u) which means x = 2*arctan(u);
let du = sec^2(x/2)/2 dx

∫ 2*sec^2(x/2) dx/[2*sec^2(x/2)*(13 - 5*sin(x))]

∫ 2 du/[sec^2(2*arctan(u)/2)*(13 - 5*sin(2*arctan(u)))]

∫ 2*cos^2(arctan(u)) du/[13 - 5*sin(2*arctan(u))]

∫ 2*cos^2(arctan(u)) du/[13 - 5*2*sin(arctan(u))*cos(arctan(u))]

adjacent = 1; opposite = u; hypotenuse = sqrt((u^2) + 1)

∫ 2*[(1/sqrt((u^2) + 1))^2] du / [13 - 10*(u/sqrt((u^2) + 1))*1/sqrt((u^2) + 1)]

∫ [2/((u^2) + 1)] du / [13 - (10u/((u^2) + 1))]

∫ 2 du / {[13 - (10u/((u^2) + 1))]*[(u^2) + 1]}

∫ 2 du / {13*[(u^2) + (1)] - (10u)}

∫ 2 du / [13*(u^2) + (13) - (10u)]

∫ 2 du / [13*(u^2) - (10u) + (13)]

∫ (2/13) du / [(u^2) - (10/13*u) + (1)]

∫ (2/13) du / [(u^2) - (10/13*u) + (1)]

p = (u^2) - (10/13*u) + 1

p + (25/169) = (u^2) - 10/13*u + 1 + (25/169)

p + (25/169) = ((u - 5/13)^2) + 1

p = ((u - 5/13)^2) + (144/169)

∫ (2/13) du / {[(u - (5/13))^2] + [(12/13)^2]}

b = u - 5/13; db = du

∫ (2/13) db / [(b^2) + ((12/13)^2)]

a = 12/13; b = 12/13*tan(t); db = 12/13*sec^2(t) dt

∫ (2/13) [12/13*sec^2(t) dt] / [((12/13)^2)*tan^2(t) + ((12/13)^2)]

∫ ((13/12)^2) * (2/13) * (12/13) * sec^2(t) dt /[tan^2(t) + 1]

∫ ((13/12)^2) * (2/13) * (12/13) dt = ∫ dt/6 = t/6

b = 12/13*tan(t) as t = arctan(13b/12)

arctan(13b/12)/6 as b = u - 5/13

arctan[13*(u - 5/13)/12]/6 = 1/6*arctan((13u - 5)/12) as u = tan(x/2) as x = 2*arctan(u)

NOT SURE WHAT THE FINAL ANSWER IS.


2) ∫_-∞^∞ dx/((x^2) + 4)^2

a = 2; x = 2*tan(t); dx = 2*sec^2(t) dt;

∫ 2*sec^2(t) dt/(4*tan^2(t) + 4)^2

1/8 * ∫ sec^2(t) dt/(sec^4(t))

1/8 * ∫ cos^2(t) dt

1/8 * ∫ (1 - sin^2(t)) dt

u = sin(t); du = cos(t) dt; dv = -sin(t); v = cos(t)

t + sin(t)*cos(t) - ∫cos^2(t) = ∫cos^2(t)

t + sin(t)*cos(t) = 2*∫cos^2(t)

[t + sin(t)*cos(t)]/16

x/2 = tan(t) as t = arctan(x/2)

[arctan(x/2) + sin(arctan(x/2))*cos(arctan(x/2))]/16

adjacent = x; opposite = 2; hypotenuse = sqrt((x^2) + 4)

[arctan(x/2) + (2/sqrt((x^2) + 4))*(x/sqrt((x^2) + 4))]/16

[arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->∞ [arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->∞ [(π/2) + 2/(2x)]/16 = π/32

limit x->-∞ [arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->-∞ [(π/2) + 2/(2x)]/16 = -π/32

Final answer is π/16
 

Attachments

  • 33333.jpeg
    33333.jpeg
    10.6 KB · Views: 148
Last edited:
Physics news on Phys.org
aruwin said:
2) ∫_-∞^∞ dx/((x^2) + 4)^2

a = 2; x = 2*tan(t); dx = 2*sec^2(t) dt;

∫ 2*sec^2(t) dt/(4*tan^2(t) + 4)^2

1/8 * ∫ sec^2(t) dt/(sec^4(t))

1/8 * ∫ cos^2(t) dt

I agree with you up to here, now $\displaystyle \begin{align*} \cos^2{(t)} \equiv \frac{1}{2} + \frac{1}{2}\cos{(2t)} \end{align*}$ so

$\displaystyle \begin{align*} \int{ \cos^2{(t)}\,\mathrm{d}t} &= \int{ \frac{1}{2} + \frac{1}{2}\cos{(2t)}\,\mathrm{d}t} \\ &= \frac{1}{2}t + \frac{1}{4}\sin{(2t)} + C \\ &= \frac{1}{2}t + \frac{1}{2}\sin{(t)}\cos{(t)} \\ &= \frac{1}{2}t + \frac{1}{2}\tan{(t)}\cos^2{(t)} + C \\ &= \frac{1}{2}t + \frac{\tan{(t)}}{2\sec^2{(t)}} + C \\ &= \frac{1}{2}t + \frac{\tan{(t)}}{2 \left[ 1 + \tan^2{(t)} \right] } + C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{\frac{x}{2}}{2 \left[ 1 + \left( \frac{x}{2} \right) ^2 \right] } + C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{\frac{x}{2}}{ 2 \left( 1 + \frac{x^2}{4} \right) } +C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{x}{4 + x^2} + C \end{align*}$

Anyway, since the integrand is an even function, that means

$\displaystyle \begin{align*} \int_{-\infty}^{\infty}{ \frac{\mathrm{d}x}{ \left( x^2 + 4 \right) ^2 } } &= 2\int_0^{\infty}{ \frac{\mathrm{d}x}{ \left( x^2 + 4 \right) ^2 } } \\ &= 2 \lim_{\epsilon \to \infty}{ \left[ \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{x}{4 + x^2} \right] _0^{\epsilon} } \\ &= \frac{\pi}{2} \end{align*}$
 
Prove It said:
I agree with you up to here, now $\displaystyle \begin{align*} \cos^2{(t)} \equiv \frac{1}{2} + \frac{1}{2}\cos{(2t)} \end{align*}$ so

$\displaystyle \begin{align*} \int{ \cos^2{(t)}\,\mathrm{d}t} &= \int{ \frac{1}{2} + \frac{1}{2}\cos{(2t)}\,\mathrm{d}t} \\ &= \frac{1}{2}t + \frac{1}{4}\sin{(2t)} + C \\ &= \frac{1}{2}t + \frac{1}{2}\sin{(t)}\cos{(t)} \\ &= \frac{1}{2}t + \frac{1}{2}\tan{(t)}\cos^2{(t)} + C \\ &= \frac{1}{2}t + \frac{\tan{(t)}}{2\sec^2{(t)}} + C \\ &= \frac{1}{2}t + \frac{\tan{(t)}}{2 \left[ 1 + \tan^2{(t)} \right] } + C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{\frac{x}{2}}{2 \left[ 1 + \left( \frac{x}{2} \right) ^2 \right] } + C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{\frac{x}{2}}{ 2 \left( 1 + \frac{x^2}{4} \right) } +C \\ &= \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{x}{4 + x^2} + C \end{align*}$

Anyway, since the integrand is an even function, that means

$\displaystyle \begin{align*} \int_{-\infty}^{\infty}{ \frac{\mathrm{d}x}{ \left( x^2 + 4 \right) ^2 } } &= 2\int_0^{\infty}{ \frac{\mathrm{d}x}{ \left( x^2 + 4 \right) ^2 } } \\ &= 2 \lim_{\epsilon \to \infty}{ \left[ \frac{1}{2}\arctan{ \left( \frac{x}{2} \right) } + \frac{x}{4 + x^2} \right] _0^{\epsilon} } \\ &= \frac{\pi}{2} \end{align*}$
What about no. 1? What is the final answer?
 
aruwin said:
What about no. 1? What is the final answer?

You're welcome >_<
 
Prove It said:
You're welcome >_<

Opps, sorry sorry! Thank you! I was so desperate about the answer that I forgot my manners. Forgive me.
 
aruwin said:
Hi.
Is there a short way to calculate real integration? I tried it but it looks so tedious. I attached the question so please refer to that. I am stuck with no.1, by the way.
Here is my attempt:

∫_0^(2π) dx/(13 - 5*sin(x))


let u = tan(x/2) which means x/2 = arctan(u) which means x = 2*arctan(u);
let du = sec^2(x/2)/2 dx

∫ 2*sec^2(x/2) dx/[2*sec^2(x/2)*(13 - 5*sin(x))]

∫ 2 du/[sec^2(2*arctan(u)/2)*(13 - 5*sin(2*arctan(u)))]

∫ 2*cos^2(arctan(u)) du/[13 - 5*sin(2*arctan(u))]

∫ 2*cos^2(arctan(u)) du/[13 - 5*2*sin(arctan(u))*cos(arctan(u))]

adjacent = 1; opposite = u; hypotenuse = sqrt((u^2) + 1)

∫ 2*[(1/sqrt((u^2) + 1))^2] du / [13 - 10*(u/sqrt((u^2) + 1))*1/sqrt((u^2) + 1)]

∫ [2/((u^2) + 1)] du / [13 - (10u/((u^2) + 1))]

∫ 2 du / {[13 - (10u/((u^2) + 1))]*[(u^2) + 1]}

∫ 2 du / {13*[(u^2) + (1)] - (10u)}

∫ 2 du / [13*(u^2) + (13) - (10u)]

∫ 2 du / [13*(u^2) - (10u) + (13)]

∫ (2/13) du / [(u^2) - (10/13*u) + (1)]

∫ (2/13) du / [(u^2) - (10/13*u) + (1)]

p = (u^2) - (10/13*u) + 1

p + (25/169) = (u^2) - 10/13*u + 1 + (25/169)

p + (25/169) = ((u - 5/13)^2) + 1

p = ((u - 5/13)^2) + (144/169)

∫ (2/13) du / {[(u - (5/13))^2] + [(12/13)^2]}

b = u - 5/13; db = du

∫ (2/13) db / [(b^2) + ((12/13)^2)]

a = 12/13; b = 12/13*tan(t); db = 12/13*sec^2(t) dt

∫ (2/13) [12/13*sec^2(t) dt] / [((12/13)^2)*tan^2(t) + ((12/13)^2)]

∫ ((13/12)^2) * (2/13) * (12/13) * sec^2(t) dt /[tan^2(t) + 1]

∫ ((13/12)^2) * (2/13) * (12/13) dt = ∫ dt/6 = t/6

b = 12/13*tan(t) as t = arctan(13b/12)

arctan(13b/12)/6 as b = u - 5/13

arctan[13*(u - 5/13)/12]/6 = 1/6*arctan((13u - 5)/12) as u = tan(x/2) as x = 2*arctan(u)

NOT SURE WHAT THE FINAL ANSWER IS.


2) ∫_-∞^∞ dx/((x^2) + 4)^2

a = 2; x = 2*tan(t); dx = 2*sec^2(t) dt;

∫ 2*sec^2(t) dt/(4*tan^2(t) + 4)^2

1/8 * ∫ sec^2(t) dt/(sec^4(t))

1/8 * ∫ cos^2(t) dt

1/8 * ∫ (1 - sin^2(t)) dt

u = sin(t); du = cos(t) dt; dv = -sin(t); v = cos(t)

t + sin(t)*cos(t) - ∫cos^2(t) = ∫cos^2(t)

t + sin(t)*cos(t) = 2*∫cos^2(t)

[t + sin(t)*cos(t)]/16

x/2 = tan(t) as t = arctan(x/2)

[arctan(x/2) + sin(arctan(x/2))*cos(arctan(x/2))]/16

adjacent = x; opposite = 2; hypotenuse = sqrt((x^2) + 4)

[arctan(x/2) + (2/sqrt((x^2) + 4))*(x/sqrt((x^2) + 4))]/16

[arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->∞ [arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->∞ [(π/2) + 2/(2x)]/16 = π/32

limit x->-∞ [arctan(x/2) + (2x/((x^2) + 4))]/16

limit x->-∞ [(π/2) + 2/(2x)]/16 = -π/32

Final answer is π/16

If you're going to make the substitution $\displaystyle \begin{align*} u = \tan{ \left( \frac{x}{2} \right) } \implies \mathrm{d}u = \frac{1}{2}\sec^2{ \left( \frac{x}{2} \right) } \end{align*}$ then

$\displaystyle \begin{align*} \sin{(x)} &= 2\sin{ \left( \frac{x}{2} \right) } \cos{ \left( \frac{x}{2} \right) } \\ &= 2 \tan{ \left( \frac{x}{2} \right) } \cos^2{ \left( \frac{x}{2} \right) } \\ &= \frac{2\tan{ \left( \frac{x}{2} \right) } }{\sec^2{ \left( \frac{x}{2} \right) } } \\ &= \frac{2\tan{ \left( \frac{x}{2} \right) } }{ 1 + \tan^2{ \left( \frac{x}{2}\right) } } \\ &= \frac{2u}{1 + u^2} \end{align*}$

and so the integral is

$\displaystyle \begin{align*} \int{ \frac{\mathrm{d}x}{13 - 5\sin{(x)}}} &= \int{ \frac{ \frac{1}{2}\sec^2{ \left( \frac{x}{2} \right) }\,\mathrm{d}x}{ \frac{1}{2}\sec^2{ \left( \frac{x}{2} \right) } \left[ 13 - 5\sin{(x)} \right] } } \\ &= \int{ \frac{\mathrm{d}u}{\frac{1}{2} \left[ 1 + \tan^2{ \left( \frac{x}{2} \right) } \right] \left\{ 13 - 5 \left[ \frac{2u}{1 + u^2} \right] \right\} } } \\ &= 2\int{ \frac{\mathrm{d}u}{\left( 1 + u^2 \right) \left( 13 - \frac{10u}{1 + u^2} \right) } } \\ &= 2\int{ \frac{\mathrm{d}u}{ 13u^2 - 10u + 13} } \\ &= \frac{2}{13} \int{ \frac{\mathrm{d}u}{u^2 - \frac{10}{13}u + 1 } } \\ &= \frac{2}{13} \int{ \frac{\mathrm{d}u}{ u^2 - \frac{10}{13}u + \left( -\frac{5}{13} \right) ^2 - \left( -\frac{5}{13} \right) ^2 + 1 } } \\ &= \frac{2}{13} \int{ \frac{\mathrm{d}u}{ \left( u - \frac{5}{13} \right) ^2 - \frac{25}{169} + \frac{169}{169}} } \\ &= \frac{2}{13} \int{ \frac{\mathrm{d}u}{ \left( u - \frac{5}{13} \right) ^2 + \frac{144}{169} } } \\ &= \frac{2}{13} \int{ \frac{\mathrm{d}u}{ \left( u - \frac{5}{13} \right) ^2 + \left( \frac{12}{13} \right) ^2 }} \end{align*}$

Now make the substitution $\displaystyle \begin{align*} u - \frac{5}{13} = \frac{12}{13}\tan{ \left( \theta \right) } \implies \mathrm{d}u = \frac{12}{13} \sec^2{ \left( \theta \right) }\,\mathrm{d}\theta \end{align*}$ and the integral becomes

$\displaystyle \begin{align*} \frac{2}{13} \int{ \frac{\mathrm{d}u}{ \left( u -\frac{5}{13} \right) ^2 + \left( \frac{12}{13} \right) ^2 } } &= \frac{2}{13} \int{ \frac{ \frac{12}{13}\sec^2{ \left( \theta \right) } \,\mathrm{d}\theta }{ \left[ \frac{12}{13} \tan{\left( \theta \right) } \right] ^2 + \left( \frac{12}{13} \right) ^2 } } \\ &= \frac{2}{13} \int{ \frac{ \frac{12}{13} \sec^2{ \left( \theta \right) } \,\mathrm{d}\theta }{ \left( \frac{12}{13} \right) ^2 \sec^2{ \left( \theta \right) } } } \\ &= \frac{1}{6} \int{ \mathrm{d}\theta } \\ &= \frac{1}{6}\theta + C \\ &= \frac{1}{6} \arctan{ \left( \frac{13u - 5}{12} \right) } + C \\ &= \frac{1}{6} \arctan{ \left[ \frac{13 \tan{ \left( \frac{x}{2} \right) } - 5 }{12} \right] } + C \end{align*}$

Thus

$\displaystyle \begin{align*} \int_0^{2\pi}{ \frac{\mathrm{d}x}{ 13 - 5\sin{(x)} } } &= \frac{1}{6} \left\{ \arctan{ \left[ \frac{13\tan{\left( \frac{x}{2} \right) } - 5}{12} \right] } \right\}_0^{2\pi} \\ &= \frac{1}{6} \left\{ \arctan{ \left[ \frac{13\tan{ \left( \pi \right) } - 5}{12} \right] } - \arctan{ \left[ \frac{13\tan{ (0) } - 5}{12} \right] } \right\} \\ &= \frac{1}{6} \left[ \arctan{ \left( -\frac{5}{12} \right) } - \arctan{ \left( -\frac{5}{12} \right) } \right] \\ &= 0 \end{align*}$
 
It may be that some objection is to move to the 'solution' $\displaystyle \int_{0}^{2\ \pi} \frac{d \theta}{13 - 5\ \sin \theta} =0$. It is easy to see that in $[0,2\ \pi]$ is $\displaystyle \frac{1}{13 - 5\ \sin \theta} > 0$...

Kind regards

$\chi$ $\sigma$
 
The procedure for solving the definite integral...

$\displaystyle I=\int_{0}^{2\ \pi} \frac{d \theta}{13 - 5\ \sin \theta}\ (1)$

... through the substition $\displaystyle u=\tan \frac{\theta}{2}$ is correct. Taking into account that for $\theta$ going from 0 to $2\ \pi$ u goes from $- \infty$ to $+ \infty$ we arrive at the integral...

$\displaystyle I = 2\ \int_{- \infty}^{+ \infty} \frac{d u}{13 - 10\ u + 13\ u^{2}} = \frac{1}{6}\ \lim_{l \rightarrow \infty} |\tan^{-1} \frac{13\ u - 5}{12}|_{- l}^{+ l} = \frac{\pi}{6}\ (2)$

Kind regards

$\chi$ $\sigma$
 
chisigma said:
The procedure for solving the definite integral...

$\displaystyle I=\int_{0}^{2\ \pi} \frac{d \theta}{13 - 5\ \sin \theta}\ (1)$

... through the substition $\displaystyle u=\tan \frac{\theta}{2}$ is correct. Taking into account that for $\theta$ going from 0 to $2\ \pi$ u goes from $- \infty$ to $+ \infty$ we arrive at the integral...

$\displaystyle I = 2\ \int_{- \infty}^{+ \infty} \frac{d u}{13 - 10\ u + 13\ u^{2}} = \frac{1}{6}\ \lim_{l \rightarrow \infty} |\tan^{-1} \frac{13\ u - 5}{12}|_{- l}^{+ l} = \frac{\pi}{6}\ (2)$

Kind regards

$\chi$ $\sigma$

But surely $\displaystyle \begin{align*} \tan{ \left( \frac{0}{2} \right) } = 0 \end{align*}$, not $\displaystyle \begin{align*} \to \infty \end{align*}$
 
  • #10
chisigma said:
The procedure for solving the definite integral...

$\displaystyle I=\int_{0}^{2\ \pi} \frac{d \theta}{13 - 5\ \sin \theta}\ (1)$

... through the substition $\displaystyle u=\tan \frac{\theta}{2}$ is correct. Taking into account that for $\theta$ going from 0 to $2\ \pi$ u goes from $- \infty$ to $+ \infty$ we arrive at the integral...

$\displaystyle I = 2\ \int_{- \infty}^{+ \infty} \frac{d u}{13 - 10\ u + 13\ u^{2}} = \frac{1}{6}\ \lim_{l \rightarrow \infty} |\tan^{-1} \frac{13\ u - 5}{12}|_{- l}^{+ l} = \frac{\pi}{6}\ (2)$

Kind regards

$\chi$ $\sigma$

The result can be obtained in faster way using the general formula reported in...

http://mathhelpboards.com/calculus-10/integration-help-11145.html#post51926

... that I suggest memorizing ...

$\displaystyle \int \frac{dx}{a + b\ x + c\ x^{2}} = \frac{2}{\sqrt{\Delta}}\ \tan^{-1} \frac{b + 2\ c\ x}{\sqrt{\Delta}},\ \Delta = 4\ a\ c - b^{2}\ (1) $

Kind regards

$\chi$ $\sigma$
 
  • #11
Prove It said:
But surely $\displaystyle \begin{align*} \tan{ \left( \frac{0}{2} \right) } = 0 \end{align*}$, not $\displaystyle \begin{align*} \to \infty \end{align*}$
As $\theta$ goes from $0$ to $2\pi$, $u = \tan\frac\theta2$ goes from $0$ to $\infty$ (in the first half of the interval) and then from $-\infty$ to $0$ (in the second half of the interval). So as $\theta$ goes through the entire interval, $u$ covers the whole real line from $-\infty$ to $\infty$.
 
  • #12
What about Residue Theorem? I think we can use that for this integration.
 
  • #13
aruwin said:
What about Residue Theorem? I think we can use that for this integration.

Which function and contour would you choose?
 
  • #14
aruwin said:
What about Residue Theorem? I think we can use that for this integration.
Yes, you can use that method. You need to make the substitution $z = e^{ix} = \cos x + i \sin x$. Then $dz = ie^{ix}dx = iz\,dz$ so that $dx = \frac {dz}{iz}.$ Also, $z^{-1} = \cos x - i \sin x$, so that $\sin x = \frac1{2i}{z-z^{-1}}.$ The integral then goes round the unit circle $C$ and is equal to $$\begin{aligned} \oint_C \frac1{13-\frac5{2i}(z-z^{-1})}\,\frac{dz}{iz}\ &= \oint_C \frac{2\,dz}{26iz - 5z(z-z^{-1})} \\ &= \oint_C \frac{-2\,dz}{5z^2 - 26iz - 5} \\ &= \oint_C \frac{-2\,dz}{(5z-i)(z-5i)}.\end{aligned}$$ By the residue theorem, that last integral is equal to $2\pi i$ times the residue at the only pole inside the contour, which is at $z = i/5.$ The residue there is $\dfrac{-2i}{24}$ and that gives the value of the integral as $\dfrac{\pi}6$ (in agreement with chisigma's result at comment #8 above).

You can also do the other integral $$\int_{-\infty}^{\infty} \frac{dx}{(x^2+4)^2}$$ by contour integration. This time, integrate $\dfrac1{(z^2+4)^2}$ around a contour consisting of the interval $[-R,R]$ of the $x$-axis followed by a semicircle of radius $R$ in the upper half-plane, and then let $R\to\infty$.
 
Last edited:

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 3 ·
Replies
3
Views
7K