Teh
- 47
- 0
MarkFL said:We are given the function:
$$f(x)=\frac{3}{x}$$
Using the given definition, we are to compute:
$$f'(a)=\lim_{x\to a}\frac{f(x)-f(a)}{x-a}=\lim_{x\to a}\frac{\dfrac{3}{x}-\dfrac{3}{a}}{x-a}=\lim_{x\to a}\frac{3a-3x}{ax(x-a)}=-\lim_{x\to a}\frac{3(x-a)}{ax(x-a)}=-\lim_{x\to a}\frac{3}{ax}=-\frac{3}{a^2}$$
And so the tangent line at the point $(b,f(b))$ would be given by (using the point-slope formula):
$$y=-\frac{3}{b^2}(x-b)+\frac{3}{b}=-\frac{3}{b^2}x+\frac{6}{b}$$
Here's an interactive graph to show you the functions and some of its tangent lines...you can use the "slider" for $b$ to see the tangent line for different values of $b$.
In this problem, we are given $b=4$...so what is the tangent line?
Teh said:the tangent line will be 3/2