- #1
dreter98
- 3
- 0
- Homework Statement
- I need to prove using the axioms ive added that X^2>=0 (x^2>0 or x^2=0). Im unsure what im doing ive attached what ive done so far
- Relevant Equations
- (A1) If x∈F and y∈F, then x+y∈F.
(A2) (commutativity of addition) x+y = y+x for all x,y∈F.
(A3) (associativity of addition) (x+y)+z = x+(y+z) for all x,y,z∈F.
(A4) There exists an element 0∈F such that 0+x = x for all x∈F.
(A5) For every element x∈F there exists an element−x∈F such that x+(−x) = 0.
(M1) If x∈F and y∈F, then xy∈F.
(M2) (commutativity of multiplication) xy = yx for all x,y∈F.
(M3) (associativity of multiplication) (xy)z = x(yz) for all x,y,z∈F.
(M4) There exists an element 1∈F (and 16= 0) such that 1x = x for all x∈F.
(D) (distributive law) x(y+z) = xy+xz for all x,y,z∈F.
(x)(x)>0 (D)
(x+(-x))(x+(-x)) >0 (A4)
x^2 + 2(-x)(x) + (-x)^2 >0 (D)
x^2 - 2x^2 + (-x)^2 >0
-x^2 + (-x)^2 >0
(x+(-x))(x+(-x)) >0 (A4)
x^2 + 2(-x)(x) + (-x)^2 >0 (D)
x^2 - 2x^2 + (-x)^2 >0
-x^2 + (-x)^2 >0