How can I use slope calculations to solve for sin(x)?

Click For Summary
SUMMARY

This discussion focuses on using slope calculations to approximate the sine function, specifically through the exploration of the function f(x) = -(x^2) + 1 as a potential model. The user, Dave, attempts to derive a ratio of distances along the x-axis to gain insights into the sine wave's behavior. He utilizes the derivative of sin(x), which is cos(x), and employs a TI-83 calculator to solve equations related to these concepts. Ultimately, Dave seeks clarification on solving equations involving cosine and understanding arc length calculations.

PREREQUISITES
  • Understanding of calculus concepts, including derivatives and integrals.
  • Familiarity with the sine and cosine functions and their properties.
  • Basic knowledge of Taylor series and their applications in function approximation.
  • Experience with graphing calculators, specifically the TI-83 model.
NEXT STEPS
  • Research the Taylor series expansion for sin(x) and its convergence properties.
  • Learn how to solve trigonometric equations, specifically Cos(x) = y.
  • Study the arc length formula in detail, including its derivation and applications.
  • Explore numerical methods for approximating integrals and their significance in calculus.
USEFUL FOR

Students and enthusiasts of mathematics, particularly those interested in calculus, trigonometry, and numerical methods for function approximation.

sbcdave
Messages
10
Reaction score
0
Hi. I have been trying to find a way to create a function that I can use to solve sin(x) in my head. I'm familiar with the taylor series but a few weeks ago thought that f(x)= -(x^2)+1 might superimpose well over a sin wave and would be an easy way to approximate.

e.g. from x= +1 to 0 would represent sin(0) to sin(pi/2) and if you wanted a 45 degree angle you could put .5 into -(x^2)+1.

It was close but obviously not close enough.

A few hours ago I was reading about AC current in an electronics book and came up with another related idea. I assumed that if you look at any two x values (that lie between critical points) on a curve (I'll call them a and b), and calculate the slope for the curve along that interval, and then using the derivative find where on that interval the instantaneous slope matches the slope you calculated for the interval (I'll call that c), you could look at the distance a to c divided by distance a to b (along x-axis) and consider that ratio a characteristic of the curve.

I'm having a hard time putting this in text, hopefully some of the people that read this are still with me.

e.g. for x^2, from 0 to 3 along the x-axis the rise is 9/run=3 so slope=3 a=0 and b=3
the derivative 2x = 3 at x = 1.5 so c=1.5 (i.e. a tangent line to x^2 at x=1.5 has slope 3)

a to c = 1.5, a to b = 3 , 1.5/3 = 0.5, and for any interval length along x^2 c-a/b-a = 0.5

e.g. between 2 and 100 on x rise is 10000-4( or 9996) over run 100-2 (or 98) = 102 = m(slope) from x=2 to 100
2x=102 x=51
a line tangent to the curve of x^2 at x=51 has a slope of 102 as well
(51-2)/(100-2)=0.5

The reason I tested this curve first was for simplicity, my intentions were to find a (c-a)/(b-a) for a sine wave, in hopes that it would add some insight to the wave and maybe a simpler arithmetic way of explaining and thinking about it.

so for a=0 (the minimum of the sine curve) b=pi/2 (the maximum of the sine curve) the slope is sin(pi/2)/(pi/2) = 2/pi

I found a proof that showed the derivative of sin(x) to be cos(x) and used a solve function on my ti-83(because I had no other idea how) to say cos(x) - 2/pi = 0 and solve for x, it returned .8806... which I verified when cos(x) did = 2/pi

This now being the distance from a aka c, along the x axis, and knowing pi/2 is the distance from a to b, my ratio was x/(pi/2) which = 0.5606641... which was not a fraction and did not divide equally into pi : (

I redid the steps from 0 to pi/4 and got 0.5733405159, which seemed to prove the ratio concept didn't work for the sine wave

So I tried pi/1000 and got .57735, not far from pi/4

pi/1000000 confused my calculator.

I've considered that the theory could be incorrect, but still intriguing because of how close the ratio is from 0 to pi/2), or that it could be correct and my calculator is giving incorrect answers because of the way it calculates.

My question is, does anyone have any input that may add insight and or put my mind at ease.

Hopefully someone finds amusement in this at least.

Dave
 
Physics news on Phys.org
I'm feeling pretty stupid since no one even thought this deserved a reply...haha

I'm giving it a bump just in case and have a few other questions.

1. How do I solve Cos(x) = y for x? I can see cos(x)-y=0, or cos(x)/y=1 but I'm lost from there.

2. I was looking into the procedure for finding arc length, to compare arc length from a to c and arc length from a to b. Looking for a relationship that might stand true for any interval between 0 and pi/2 on a sine wave. I am having trouble comprehending the integral for the arc length calculations though. I followed the algebra to

s = \int_a^b \sqrt{1+f '(x)}dx

Using cos(x) as my f '(x) and the concept F(b)-F(a) with a=0 and b=pi/2, I get

s = \sqrt{1+cos(pi/2)}dx - \sqrt{1+cos(0)}dx

= dx - \sqrt{2}dx

Is that right?

Thanks for any input, Dave
 
Forgot to say f prime was squared in the integrals I showed, but oddly the numbers work out the same either way. i.e. 1 squared and 0 squared, then add the one and square root.

Also forgot to ask what dx represents here. I know this is probably beneath most of you, but I didn't see a better place to ask.

Thanks.
 
Is there a mod than can move this to a forum where I may get some replies?
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
855