MHB How can the integration limit be determined for a continuous function?

AI Thread Summary
The discussion revolves around determining the integration limit for a continuous function, specifically analyzing the limit of a nested integral involving the function f. The problem presented involves calculating the limit as x approaches 0 of f applied to an integral of f. Participants express appreciation for the solutions provided, highlighting the complexity of the problem. The conversation emphasizes the challenge of finding alternative methods to solve this limit. Overall, the thread showcases a mathematical exploration of continuous functions and their integrals.
Dethrone
Messages
716
Reaction score
0
Suppose $f$ is a continuous function on $(-\infty,\infty)$. Calculating the following in terms of $f$.

$$\lim_{{x}\to{0}}f\left(\int_{0}^{\int_{0}^{x}f(y) \,dy} f(t)\,dt\right)$$

Source: Calc I Midterm
 
Last edited:
Mathematics news on Phys.org
Let $g(x) = \int_0^x f(t)\, dt$. Since $f$ is continuous, so is $g$. Therefore, the composition $f\circ g \circ g$ is continuous. We are considering the limit $\lim_{x\to 0} f(g(g(x)))$, which equals $f(g(g(0)))$, by continuity of $f\circ g \circ g$. Since $g(0) = 0$, the limit is $f(0)$.
 
Excellent solution, Euge. Thanks for participating!
I thought this would be an interesting problem, as any other approach to this would be very difficult (if even possible). :D
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top