How Can the Refractive Index Be Less Than One?

DannyJ108
Messages
23
Reaction score
2
Homework Statement
The Lorentz model to calculate the refraction index of a dielectric, in the simplest of terms states the following equation: (see relevant equations)
Relevant Equations
##n^2(\omega) = 1 + \frac {\omega^2_p} {\omega^2_0 - \omega^2}##
Hello fellow users,

I've been given the Lorentz model to calculate the refraction index of a dielectric, the formula in its simplest way states that:
##n^2(\omega) = 1 + \frac {\omega^2_p} {\omega^2_0 - \omega^2}##

Where ##\omega_p## is the plasma frequency and ##\omega_0## is the resonance frequency.

If ##\omega > \omega_0## the refraction index ##n## can be smaller than 1 and experimental results verify this. How does this result reconcile with the fact that "nothing can travel faster than light in a vacuum"?

I need to make a bibliographical search and give an explanation for this, but I can't find an exact answer to this question or the same formula I'm given.
I need your help please! Thank you in advance!
 
Physics news on Phys.org
I think it is just that the phase velocity is faster than light; no energy is being propagated at that speed.
 
  • Like
Likes SammyS and Twigg
Thank you
tech99 said:
I think it is just that the phase velocity is faster than light; no energy is being propagated at that speed.
 
This is a very old apparent problem. It was asked Sommerfeld by Willy Wien in 1907, and Sommerfeld wrote a very short article showing by using a complex integral and the theorem of residues that there's nothing violating Einstein causality and that there's nothing propagating faster than the speed of light that is not supposed to do so in the region of anomalous dispersion. The details have been worked out by Sommerfeld and Brillouin in two papers in the Annalen der Physik in 1914.

You find a summary in Sommerfeld's Lectures on Theoretical Physics vol. 4 (Optics) as well as in Jackson's Classical electrodynamics. The upshot is that in the frequency realm around the resonance group velocity doesn't make sense as an approximate signal-propagation velocity as it does in regions of "normal dispersion", because the transient signal is deformed so much that you cannot consider it a smoothly moving wave packet. In this model the front velocity of the wave is exactly ##c_{\text{vac}}##, and thus there's no signal which propagates faster than light, and everything is in accordance with relativity as you expect from Maxwell's equations, which is the paradigmatic example of a classical relativistic field theory :-).
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top