MHB How can the variables m, n, s, and t be solved for these equations?

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

Problem:

Solve for reals of

$m-n-s+t=1$

$m^2+n^2-s^2-t^2=3$

$m^3-n^3-s^3+t^3=-5$

$m^4+n^4-s^4-t^4=15$

I've encountered this problem a while back and I've tried to use many methods (which include by manipulating some inequality theorems or solving them by the elimination of variables method or trying to relate the second equation and the third by multiplying the second and the third (after changing the minus sign) and let it equal to the 4th equation but all these methods have fallen apart. I am getting very tired of it and hence I hope someone could help me by giving me some hints so that I can finish the unfinished problem.

Thanks.
 
Mathematics news on Phys.org
anemone said:
Hi MHB,

Problem:

Solve for reals of

$m-n-s+t=1$

$m^2+n^2-s^2-t^2=3$

$m^3-n^3-s^3+t^3=-5$

$m^4+n^4-s^4-t^4=15$

I've encountered this problem a while back and I've tried to use many methods (which include by manipulating some inequality theorems or solving them by the elimination of variables method or trying to relate the second equation and the third by multiplying the second and the third (after changing the minus sign) and let it equal to the 4th equation but all these methods have fallen apart. I am getting very tired of it and hence I hope someone could help me by giving me some hints so that I can finish the unfinished problem.

Thanks.

I was looking at $m^4+n^4-s^4-t^4=15$ and wondered...
Could I find a solution for just this equation without going to great lengths?

Well... it might be something like $(\pm 2)^4$ combined with a couple of $(\pm 1)^4$.

And what do you know... it fits! ;)
 
Hi I like Serena, thank you very much for your reply.

You're absolutely right because based on your observation, we can tell that $(-2, -1, -1, 1)$ and $(1, 2, -1, 1)$ are two credible answers to the problem and now, I think the remaining effort is to show that these are the only two possible answers. (Smile)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top