How can we accurately calculate the time of impact in a real-life collision?

  • Context: Undergrad 
  • Thread starter Thread starter wdc
  • Start date Start date
  • Tags Tags
    Ball Collision
Click For Summary
SUMMARY

The discussion focuses on accurately calculating the time of impact during a real-life collision, specifically an inelastic collision involving a 25,000 kg airplane and a 1 kg rod. Participants clarify that ideal collisions involve infinite forces over infinitesimal durations, while real collisions have finite forces over small but measurable durations. The conversation emphasizes using conservation of momentum to determine post-impact velocities and suggests practical methods for estimating impact duration, such as measuring vibration frequencies or conducting experiments with force transducers. The industry-standard software LS-DYNA3D is recommended for modeling complex impacts.

PREREQUISITES
  • Understanding of inelastic collisions and conservation of momentum
  • Familiarity with impulse and coefficient of restitution concepts
  • Knowledge of basic physics principles related to force and acceleration
  • Experience with impact testing methodologies and data analysis
NEXT STEPS
  • Research the principles of conservation of momentum in inelastic collisions
  • Learn about the coefficient of restitution and its applications in collision analysis
  • Explore the use of LS-DYNA3D for simulating real-world impact scenarios
  • Investigate methods for measuring impact duration using accelerometers or high-speed video
USEFUL FOR

Physics students, engineers, safety analysts, and professionals involved in impact testing and collision analysis will benefit from this discussion.

wdc
Messages
3
Reaction score
0
In an inelastic collision of a moving billiard ball with a second ball at rest, I understand that the two balls have the same velocity after contact, correct?

But at the instant of contact how do the velocites of the two balls change instantaneously? Doesn’t that imply an infinite force?

What am I missing here? Thanks.
 
Physics news on Phys.org
Sorry. I mis-titled my previous post. It should have read Inelastic collision.
 
wdc said:
But at the instant of contact how do the velocites of the two balls change instantaneously? Doesn’t that imply an infinite force?

What am I missing here?

You are not missing anything. An ideal collision involves an infinite force with an infinitesimal duration acting over an infinitesimal distance. A real collision will have a finite (but very large) force acting over a finite (but very small) duration acting over a finite (but very small) distance. In real life, the force will usually not even be constant over the duration of the impact.

Rather than try to measure the exact details of a collision, one can often summarize the relevant effects of a collision in terms of quantities such as "impulse" or "coefficient of restitution".
 
briggs444: Thanks for your post. It clarifies my problem but not completely. May I explain my problem and the approach I have been taking?

I am trying to exam the effect of a large, fast moving mass (an airplane weighing 25,000 kg moving at 350 m/sec) hitting a stationary object (say a a rod 1 square cm in cross section and 1 meter long that weighs 1 kg). I want to compute the force of the collision on the windshield.. Assuming that I know the strength of the windshield material (i.e. the value of the force (in pounds /sq. inch) that the winshield can withstand), I could then estimate how heavy the rod must be to break the windshield.

First, is this an elastic or an inelastic collision?

My approach
By the law of conservation of momentum, I compute the velocity of the airplane (and the rod) after impact:

Momentum before impact = Momentum after impact.

Thus VaMa + 0 = V’Ma + V’(Mass of rod) = V’ (Ma +1) ... where Va and V’ are the velocity of the airplane before and after the collision .

V’ = VaMa/Ma+1 = Va [1/(1+1/Ma] = Va [ 1-1/Ma]
= 350 [1-0.04 x 10*-3] = 350 (1- 4x10*-5)
So the airplane speed falls by 1400x10*-5 m/sec = 1.4 x 10-2 m/sec = 1.4 cm/sec.

Now, I compute the force that will slow the airplane speed down by this amount –-- using F=M x acceleration where acceleration = 1.4 cm/sec / delta t. But, in light of your post, what delta t do I use here... in a practical problem? I am stumped.

Needless to say I welcome your (and anyone elses) comments. ...wdc
 
wdc said:
First, is this an elastic or an inelastic collision?
Like all "real life" collisions, it is somewhere in between. The ideas of perfectly elastic and perfectly inelastic collisions, coefficient of restitution, etc are nice approximations, and they are very useful approximations, to teach you how to set up problems using conservation of momentum and/or energy.

But, in light of your post, what delta t do I use here... in a practical problem? I am stumped.
In the real situation, both the rod and the windscreen are flexible objects. When you hit the windscreen, it will vibrate in and out. If you have some way to estimate the vibration frequency, that will give you an idea what delta t to use - i.e. 1/4 of the period of vibration, the time it takes to reach its maximum deformation before it "wants" to spring back again.

Another way to get the time is by experiment: hit the windscreen with a projectile that contains a force transducer, or an acclerometer, or make a high speed video (maybe 10,000 frames per second) and measure what happens. Then use that data to model a different situation with a different projectile.

For "low tech" impact testing (like the shock resistance of laptop computers, cellphones, etc if they are accidentally dropped), usually the calculation is done on the basis of past experience, using the maximum acceleration the object is meant to survive on impact. The accelerations can be very large - e.g. thousands of times the acceleration due to gravity.

For impacts that have "serious" consequences (e.g. car crashes, as well as impacts on aircraft), computer models that track the deformations and stresses in the structures over time are used. One of the industry standard programs used for this is LS-DYNA3D. You might be interested in some of the animations on their website, e.g. click the "animated result" tab at http://www.dynaexamples.com/examples-manual/misc/airbag - and explore around the rest of the site to find more. Note, those models are only small demos to show how the program works. "Real world" models may be literally thousands of times bigger, and take several days to run to simulate an impact lasting a few milliseconds.
 
Last edited:

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 60 ·
3
Replies
60
Views
6K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 49 ·
2
Replies
49
Views
5K
  • · Replies 35 ·
2
Replies
35
Views
4K