How can we accurately measure the relative velocity between two moving bodies?

Click For Summary
SUMMARY

The discussion centers on accurately measuring the relative velocity between two bodies, A and B, moving perpendicularly with velocities 'a' and 'b'. Participants clarify that A perceives B moving away with velocity 'b', while B perceives A moving away with velocity 'a'. The conversation emphasizes the use of Lorentz transformations to calculate relative velocities, particularly when considering components of motion and the resultant vector. The importance of understanding both classical and relativistic approaches to relative velocity is highlighted, with references to mathematical derivations and vector addition principles.

PREREQUISITES
  • Understanding of Lorentz transformations in special relativity
  • Familiarity with vector addition and components in physics
  • Knowledge of 4-vector methods in spacetime analysis
  • Basic principles of relative motion and inertial frames
NEXT STEPS
  • Study Lorentz transformations in detail to understand their application in relative velocity calculations
  • Explore vector addition techniques, particularly in two-dimensional motion scenarios
  • Learn about 4-vectors and their role in special relativity
  • Investigate classical mechanics approaches to relative velocity for comparison with relativistic methods
USEFUL FOR

Students and educators in physics, particularly those studying mechanics and relativity, as well as anyone interested in the mathematical foundations of motion and velocity in different reference frames.

  • #31
I may be missing something, but it seems that the problem here of understanding relative velocity is not a special relativity problem. Can it be treated classically as a first step?
 
Physics news on Phys.org
  • #32
country boy said:
I may be missing something, but it seems that the problem here of understanding relative velocity is not a special relativity problem. Can it be treated classically as a first step?
This is the relativity forum. Ask your question in the appropritate forum.
 
  • #33
Meir Achuz said:
This is the relativity forum. Ask your question in the appropritate forum.

That is why I asked. The original question was posed in the context of relativity, but upon examination it may not be a relativity question. The difficulty in understanding the relative velocity between A and B is not a result of the magnitude of the velocities. It can be dealt with at low velocities.
 
Last edited:
  • #34
country boy said:
That is why I asked. The original question was posed in the context of relativity, but upon examination it may not be a relativity question. The difficulty in understanding the relative velocity between A and B is not a result of the magnitude of the velocities. It can be dealt with at low velocities.
What puzzled me is that this is taught in the first week of physics 101.
V_x=u_x-v_x
V_y=u_y-v_y.
How could this lead to a thread with 33 posts?
 
  • #35
Meir Achuz said:
What puzzled me is that this is taught in the first week of physics 101.
V_x=u_x-v_x
V_y=u_y-v_y.
How could this lead to a thread with 33 posts?

34 ... or 35 ... :-)
 
  • #36
country boy said:
I may be missing something, but it seems that the problem here of understanding relative velocity is not a special relativity problem. Can it be treated classically as a first step?

For speeds sufficiently high that Lorentz transformations are significantly different than Galilean transformations, as implied by the original post in this thread, then relativity really is needed.

From the the last equation in my previous post (#30),

(1 - V^2)^(-1/2) = (1 - u^2)^(-1/2) (1 - v^2)^(-1/2),

which, after restoring the c's, leads to

V^2 = u^2 + v^2 - (u^2 v^2)/c^2.

Without relativity, the last term disappears. This is to be expected, since the original post sums perpendicular velocities, so, non-relativistically, the speeds satisfy the Pythagorean theorem.
 
  • #37
George Jones said:
V^2 = u^2 + v^2 - (u^2 v^2)/c^2.

Without relativity, the last term disappears. This is to be expected, since the original post sums perpendicular velocities, so, non-relativistically, the speeds satisfy the Pythagorean theorem.

Thanks for the detailed 4-vector derivations you have posted. It is interesting to follow your reasoning. However, the relation above is only correct for the case where A and B were at the origin at the same time. That constraint was not stated in the original post.

In reading the original post and early exchange, it still seems that the conceptual problem here is with the contruction of a relative velocity. Once that is understood, one can move on to the Lorentz trasformations.
 
  • #38
Anant, if you're still following this, look at post 29. Country Boy has given the method.

Start with D^2 = x^2 + y^2, differentiate wrt time and you're there.
 
  • #39
Mentz114 said:
Anant, if you're still following this, look at post 29. Country Boy has given the method.

Start with D^2 = x^2 + y^2, differentiate wrt time and you're there.

I don't think that this gives the relative speed. The relative speed is the magnitude of the derivative of the relative position vector, not the derivative of of the magnitude of the relative position vector. Post #29 and the above use the part of the relative velocity that is (edit) parallel to the relative position vector, but neglect the part of the relative velocity that is perpendicular to the relative position vector.

Let \vec{D} be the relative position of B with respect to A. Then,

\vec{V} = \dot{\vec{D}} = \dot{D} \hat{D} + D \dot{\hat{D}}.

The relative of B with respect to A is

\vec{D} = \vec{r_B} - \vec{r_A};

differentiating gives

\vec{V} = \vec{v_B} - \vec{v_A};

dotting this with itself gives

\vec{V} \cdot \vec{V} = \left( \vec{v_B} - \vec{v_A} \right) \cdot \left( \vec{v_B} - \vec{v_A} \right).

Finally,

V^2 = v^2_A + v^2_B,

since \vec{v}_A is perpendicular to \vec{v}_B.

country boy said:
However, the relation above is only correct for the case where A and B were at the origin at the same time.

The above non-relativistic stuff is: modified by relativity; not dependent on whether the observers go through the spatial origin. I think my relativistic version also is independent of spacetime origin, but I could be wrong. A good check would be a derivation using methods similar to those used in the standard derivation of the sums of parallel and anti-parallel (in C's frame) velocities.
 
Last edited:
  • #40
Reply to George Jones:

I see the difference in our two approaches to relative speed. [There has been some confusion between speed and velocity in this thread, which I probably added to.] You derive the relative speed between the two reference frames of A and B, which is the same everywhere, while I derive the speed between the moving points A and B. These are, of course, different. I thought from reading the early posts that the latter was what was asked for, but now I believe that your derivation is what is needed when using the Lorentz transformation. The relative speed between A and B, as I defined it, is what the two observers see as they watch each other. It relates to the doppler effect, for instance. But I agree that it is better to approach the problem through the velocity between two moving reference frames. Relativity can then be applied without confusion and everything can be derived, including the doppler effect.

Thanks very much for sticking with me on this.
 

Similar threads

  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 35 ·
2
Replies
35
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 43 ·
2
Replies
43
Views
4K