B How Can We Observe Black Holes Growing?

Click For Summary
Black holes absorb surrounding matter through processes like accretion disks, where collisions allow particles to lose angular momentum and fall in. Observers at a finite distance perceive that objects take an infinite time to reach the event horizon, but this is a misconception; infalling objects experience a finite time to cross the horizon according to their own clocks. The discussion emphasizes that not all events are observable from every perspective in curved spacetime, and the lack of observation does not negate the occurrence of events. The concept of a universal "when" in general relativity is flawed, as time is relative and depends on the observer's frame of reference. Understanding black hole dynamics requires a nuanced grasp of relativity, beyond simplistic interpretations.
  • #91
Can one observe expansion of the EH even if one cannot ever get a light signal from whatever fell in confirming that it fell in?
 
Physics news on Phys.org
  • #92
Grinkle said:
Can one observe expansion of the EH even if one cannot ever get a light signal from whatever fell in confirming that it fell in?
In a sense, yes. There are computer generated images of what you would see against background stars as a neutron star or small BH merges with a bigger one, resulting in a single larger BH visible against background stars. However none of what see comes from at or inside a horizon.
 
  • Like
Likes Grinkle and Ibix
  • #93
Grinkle said:
Can one observe expansion of the EH even if one cannot ever get a light signal from whatever fell in confirming that it fell in?
Depends what you mean by "observe". You could measure a black hole's mass by descending to some ##r## coordinate slightly above the horizon and hovering and measuring the acceleration needed to do so. Then dump in a load of mass and repeat. You'll find the same acceleration at a larger ##r##. Or you could look at gravitational lensing.

But none of that is really observing the event horizon - it's just measuring the mass. You can't really observe the horizon because it isn't a thing, just a null surface.
 
  • Like
Likes Grinkle
  • #94
PAllen said:
In a sense, yes.

I am very likely missing something deep about curved space-time, but to me, that is the same thing as grossly / coarsely seeing something cross the EH.

The fact that I can't ever get photons from at or beyond the EH and the fact that photons redshift asymptotically as they are emitted from closer and closer to the EH are measurement limitations.

If I can see the EH expand by watching what it obscures or lenses, I observed something cross it with a measurement that doesn't depend on photons from the in-falling object, no? I guess its not really a claim that I saw that "thing" cross the EH - but in principle one can measure the total in-fall over time for a BH and if one has enough information on whatever is falling in one can construct a sequence of the in-falling events.
 
  • #95
@Ibix If I read your post first I wouldn't have bothered with mine - thanks!
 
  • Like
Likes Ibix
  • #96
I mean, one issue here is using the Schwarzschild metric and test particles falling into the black hole of that. This is not really a physical scenario because it does not actually describe the spacetime of anything with appreciable mass falling into a black hole. It just happens to be a relatively good approximation for many situations when the contribution of the infalling object to the spacetime geometry is negligible. This is certainly not the situation in the merger of two similar sized black holes.
 
  • Like
Likes Grinkle, geshel and Ibix
  • #97
Grinkle said:
I am very likely missing something deep about curved space-time, but to me, that is the same thing as grossly / coarsely seeing something cross the EH.

The fact that I can't ever get photons from at or beyond the EH and the fact that photons redshift asymptotically as they are emitted from closer and closer to the EH are measurement limitations.

If I can see the EH expand by watching what it obscures or lenses, I observed something cross it with a measurement that doesn't depend on photons from the in-falling object, no? I guess its not really a claim that I saw that "thing" cross the EH - but in principle one can measure the total in-fall over time for a BH and if one has enough information on whatever is falling in one can construct a sequence of the in-falling events.
Here is a dertailed, accurate, simulation of what would be seen against a stellar background for two equal size BH. It is easy to imagine how it would look for other cases:

 
  • Like
Likes Grinkle

Similar threads

  • · Replies 43 ·
2
Replies
43
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
788
  • · Replies 67 ·
3
Replies
67
Views
5K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 22 ·
Replies
22
Views
1K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 43 ·
2
Replies
43
Views
4K