Falling into a black hole

Click For Summary
SUMMARY

The discussion centers on the complexities of black hole physics, particularly the differing perceptions of time for observers falling into a black hole versus distant observers. It clarifies that the notion of infinite time to cross the event horizon is a misinterpretation of the Schwarzschild coordinates, which do not apply in an evaporating black hole scenario. The conversation emphasizes the importance of understanding various coordinate systems in General Relativity (GR) and how they affect the interpretation of events related to black holes. Key concepts such as Kruskal diagrams and the implications of Hawking and Unruh radiation are also highlighted.

PREREQUISITES
  • General Relativity (GR) fundamentals
  • Understanding of Schwarzschild coordinates
  • Familiarity with Kruskal diagrams
  • Basic knowledge of Hawking and Unruh radiation
NEXT STEPS
  • Study the implications of Kruskal diagrams in black hole physics
  • Explore the differences between Schwarzschild and other coordinate systems in GR
  • Investigate the concepts of Hawking radiation and its significance in black hole evaporation
  • Learn about Unruh radiation and its effects on accelerating observers
USEFUL FOR

Physicists, astrophysicists, and students of General Relativity seeking to deepen their understanding of black hole dynamics and the nature of spacetime.

  • #31
Tomas Vencl said:
Another possibility is (my favorite) that an evaporating “black” hole does not have a horizon at all.
This is the possibility I described at the end of post #10. However, I don't think that spacetime geometry (in which there is no event horizon and no singularity) is what the OP wanted to discuss.
 
Physics news on Phys.org
  • #32
Nugatory said:
For that particular question the video below by our member @A.T. may be even more helpful.



@martix That video is based on a book, which also visualizes the finite proper-time vs infinite coordinate-time issue, for falling into a black hole:

https://archive.org/details/L.EpsteinRelativityVisualizedelemTxt1994Insight/page/n201/mode/2up

But you should have a look at the previous chapters to understand those diagrams intuitively:

https://archive.org/details/L.EpsteinRelativityVisualizedelemTxt1994Insight/page/n149/mode/2up
 
  • #33
Tomas Vencl said:
This is not necessarily true.
The use of the term "coordinate time" may be confusing you. Your claim can be rephrased in coordinate-independent terms as follows: a distant observer will continue to see light signals from someone who fell into the evaporating black hole, showing them getting closer and closer to the horizon, even after the distant observer has seen the black hole evaporate.

And rephrased that way, the claim can be seen to be obviously false just by looking at the Penrose diagram of Hawking's original model. You don't even need to know the exact metric; the Penrose diagram, showing the causal structure, is enough.
 
  • Like
Likes   Reactions: Dale
  • #34
  • #35
PeterDonis said:
Your claim can be rephrased in coordinate-independent terms as follows: a distant observer will continue to see light signals from someone who fell into the evaporating black hole, showing them getting closer and closer to the horizon, even after the distant observer has seen the black hole evaporate.
I do not think so, my claim:
Tomas Vencl said:
This is not necessarily true. …
was reaction on this comment:
Dale said:
Specifically, in an evaporating spacetime it does not take an infinite amount of coordinate time to cross the horizon in Schwarzschild-like coordinates
I think that my claim can be rephrased for example that there is no horizon to cross (so there is no finite time to cross it, obviously), or, as another example, in some models with firewall also falling observer do not cross the horizon (similarly to mentioned fig.3 at arxiv article).
 
Last edited:
  • #36
Tomas Vencl said:
May be, but fact is that exact metric for evaporating “black hole” is unknown, so claiming that “in an evaporating spacetime it does not take an infinite amount of coordinate time to cross the horizon in Schwarzschild-like coordinates” is at least based on aproximations and rather speculative.
It is true that I don't know the exact metric for an evaporating black hole. However, there are a few things that we can indeed say based on first principles.

Since it is a black hole there is an event horizon where timelike worldlines can enter but not exit, this is what defines a black hole instead of a white hole. When evaporation is finished there is no more event horizon, this is what defines the evaporation. Without loss of generality, assign the time of the evaporation event to be ##t_E##. Meaning, after ##t_E## there is no event horizon. All coordinate charts, by definition, are smooth and one-to-one, including the distant observer's Schwarzschild-like chart. So the crossing of the event horizon cannot be assigned a time coordinate ##t_C>t_E##. Therefore, indeed, it does not take an infinite amount of coordinate time to cross the horizon.
 
  • Like
Likes   Reactions: Tomas Vencl
  • #37
Dale said:
It is true that I don't know the exact metric for an evaporating black hole. However, there are a few things that we can indeed say based on first principles.

Since it is a black hole there is an event horizon where timelike worldlines can enter but not exit, this is what defines a black hole instead of a white hole. When evaporation is finished there is no more event horizon, this is what defines the evaporation. Without loss of generality, assign the time of the evaporation event to be ##t_E##. Meaning, after ##t_E## there is no event horizon. All coordinate charts, by definition, are smooth and one-to-one, including the distant observer's Schwarzschild-like chart. So the crossing of the event horizon cannot be assigned a time coordinate ##t_C>t_E##. Therefore, indeed, it does not take an infinite amount of coordinate time to cross the horizon.
Sure, but you are not sure (since we do not have exact metric) that your assumptions (event horizon + evaporation) are even together physically possible . So this could be similar like counting of number of angels on tip of the needle.
I can imagine that in case of evaporation instead of real black hole there can be different object (not so black hole :-) from distant perspective indistinguishable (but yes, this is speculation already).
 
Last edited:
  • Skeptical
Likes   Reactions: Motore and PeroK
  • #38
Tomas Vencl said:
Sure, but you are not sure (since we do not have exact metric) that your assumptions (event horizon + evaporation) are even together physically possible . So this could be similar like counting of number of angels on tip of the needle.
I can imagine that in case of evaporation instead of real black hole there can be different object (not so black hole :-) from distant perspective indistinguishable (but yes, this is speculation already).
They are not my assumptions, they are the assumptions of the question.
 
  • #39
Dale said:
They are not my assumptions, they are the assumptions of the question.
OK, perhaps it would be fair to also inform the inquirer that the assumptions may not be realistic (which I clumsily tried without any successs to do in my second comment).
 
Last edited:
  • #40
Tomas Vencl said:
I think that my claim can be rephrased for example that there is no horizon to cross
Then you are not talking about Hawking's original model, or indeed any model with an event horizon. You are talking about a model like the Bardeen black hole that I referenced previously. But, as I have already said, I don't think that kind of model is what the OP of this thread is asking about.
 
  • #41
Tomas Vencl said:
in some models with firewall also falling observer do not cross the horizon (similarly to mentioned fig.3 at arxiv article).
As I said in the other thread where that paper was discussed, I don't think Fig. 3 in that paper is valid for a "firewall" model. It claims to be describing an evaporating black hole, but it looks more like a diagram (in weird coordinates) of maximally extended Schwarzschild spacetime, with both a black hole and a white hole region, and some kind of weird thing in the middle. Whatever it is, I don't think it's relevant to the discussion in this thread.
 
  • #42
Tomas Vencl said:
OK, perhaps it would be fair to also inform the inquirer that the assumptions may not be realistic (which I clumsily tried without any successs to do in my second comment).
I think most of the posts in this thread before you came into it were doing that.
 
  • Like
Likes   Reactions: Dale
  • #43
PeterDonis said:
Then you are not talking about Hawking's original model, or indeed any model with an event horizon. You are talking about a model like the Bardeen black hole that I referenced previously.………….…..I think most of the posts in this thread before you came into it were doing that.
Yes,you are right. I am leaving the discussion for now. Thank you and Dale for your ttime.
 
  • #44
@A.T. I have never seen that discussion of what lead Einstein to GR before - its very digestible, thanks, and has me hooked enough to download and read the entire text.
 
  • Like
Likes   Reactions: A.T.

Similar threads

  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 51 ·
2
Replies
51
Views
5K
  • · Replies 46 ·
2
Replies
46
Views
8K
  • · Replies 73 ·
3
Replies
73
Views
2K
  • · Replies 22 ·
Replies
22
Views
879
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 67 ·
3
Replies
67
Views
6K
  • · Replies 25 ·
Replies
25
Views
3K