How Can We Prove That Pi Is Irrational Using Geometrical and Series Methods?

  • Thread starter Thread starter Aditya89
  • Start date Start date
  • Tags Tags
    Doubt
AI Thread Summary
The discussion focuses on proving the irrationality of pi using geometrical and series methods, highlighting the use of infinite series and calculus. A key proof presented involves a lemma stating that if a continuous function is positive and its anti-derivatives are integer-valued at both endpoints, then the interval's length is irrational. The function f(x) = sin(x) is used to demonstrate this for pi, establishing its irrationality through the lemma. Additionally, a similar approach is applied to prove the irrationality of e, utilizing logarithmic properties and the same lemma. The conversation emphasizes the intriguing nature of these proofs, particularly their reliance on calculus despite addressing a numeric property.
Aditya89
Messages
23
Reaction score
0
Hey guys, how do you prove that 'pi' is irrational? I think that it is related to infinite series? Is there any geometrical method?
 
Mathematics news on Phys.org
The series for Pi is Gregory's Series to proove the irrationality is quite difficult, just google it.
 
Here's my favorite proof:

Lemma 1: Let c be a positive real number. If there exist a function, f, continuous on [0,c] and positive on (0,c) and such that f and its iterated anti-derivatives can be taken to be integer valued at both 0 and c, the c is irrational.
("can be taken to be"- we can always choose the constant of integration such that we have any given value at either 0 or c. Here we require that it the function be integer valued at BOTH 0 and c. I will post the proof separately. I remember seeing it in "Mathematics Magazine" many years ago but don't remember the author.)

Theorem \pi is irrational:
f(x)= sin(x) is continuous for all x and positive on (0, \pi). All anti-derivatives can be taken to be \pm sin(x) or \pm cos(x), all of which are integer valued (0 or \pm 1) at x= \pi. Therefore, by lemma 1, \pi is irrational.

One can also use lemma 1 to prove that e is irrational.

Lemma 2: If a is a positive real number, not equal to 1, such that ln(a) is rational, then a itself is irrational.
Proof: First note that ln(1/a)= -ln(a) is rational if and only if ln(a) is and 1/a is rational if and only if a is rational so it is sufficient to prove this for a> 1. (If a<1, apply the lemma to 1/a.)
If a>1 then ln(a)> 0. Suppose that ln(a) is rational and, contradicting the hypothesis, that a is rational: a= m/n reduced to lowest terms. Apply lemma 1 with c= ln(a)= ln(m/n) and f(x)= nex. Then f(x) is positive and continuous for all x and so for the required intervals. We can take ALL anti-derivatives to be f(x)=nex by taking the constant of integration to be 0. f(0)= n, an integer, and f(c)= f(ln(m/n)= neln(m/n)= m, an integer. Therefore, by lemma 1, a is rational, a contradiction.

Now: Theorem: e is irrational.
e is a positive real number, not equal to 1 (since 1= e0 and ex is 1 to 1). ln(e)= 1, a rational number. Therefore, by lemma 2, e is irrational.
 
Here is the proof of "lemma 1" above. As I said there, I remember reading it in "Mathematics Magazine" many years ago but don't remember the author. It is certainly not original with me! I find it intriguing for two reasons- first, irrationality is a numeric, not function, property, yet this depends upon calculus methods. Second, it is the "worst" kind of proof by contradiction! Contradicting the conclusion (that c is irrational) leads to two conclusions (I call them "statement A" and "statement B" below) neither of which seems to have much to do with irrationality but which contradict one another.
Lemma i: let c be a positive real number. If there exist a function f, continuous on [0,c] and positive on (0,c), such that f and all of its anti-derivatives can be taken to be integer valued at 0 and c (by appropriate choice of the constant of integration), then c is irrational.
Proof by contradiction:
First: define the set P of all polynomials, p(x), such that p and all of its derivatives are integer valued at 0 and c.
Notice "derivatives" rather than "anti-derivatives". That allows us to prove:
Lemma i: if f(x) is the function above and p(x) is any polynomial in P, then \int_0^c f(x)p(x)dx is an integer.
To prove this, use repeated integeration by parts, repeatedly integrating the f "part" and differentiating the p "part". Since p is a polynomial and differentiating reduces the degree, that will eventually terminate giving the integral as a sum of anti-derivatives of f times derivatives of p, all of which are integer valued at 0 and c.
A similar proof gives
Lemma ii: the set P is closed under multiplication.
Suppose p and q are both in P. The pq is a polynomial and pq(0)= p(0)q(0) and pq(c)= p(c)q(c) are products of integers. All derivatives of pq can be done by repeated application of the product rule: every derivative is a sum of products of various derivatives of p times derivatives of q- all integer valued at 0 and c.

Now, suppose c is rational: c= m/n reduced to lowest terms. Let p0(x)= m- 2nx. Clearly p is a polynomial. p(0)= m, an integer and p(c)= p(m/n)= m- 2n(m/n)= -m, an integer. p'(x)= -2n, an integer for all x, and all subsequent derivatives are 0. Therefore, p0 is in P.

For i any positive integer, let p_i(x)= \frac{(mx- nx^2)^i}{i!}. We will prove, by induction, that pi is in P for all i.,
If i= 1, p1(x)= mx- nx^2= x(m- nx). p1(0)= 0 because of that 'x' factor and p1(c)= p1(m/n)= 0 because of the 'm-nx' factor. p'1= m- 2nx= p0(x). Since that is in P we have immediately that all derivatives of p1 are integer valued at p and so p1 is in P.

Assume that pi is in P for some i. p_{i+1}= \frac{(mx-nx^2)^{i+1}}{(i+1)!}= \frac{x^{i+1}(m-nx)^{i+1}}{(i+1)!} is 0 at both x=0 and x= c= m/n because of the factors. p&#039;(x)= \frac{i(mx-nx^2)^i(m-2nx)}{(i+1)!}= \frac{(mx-nx^2)^i}{i!}(m- 2nx)= p_i(x)p_0(x). Since both pi and p0 are in P and P is closed under multiplication, so is p'i+1- all further derivatives are integer valued at 0 and c and so pi+1 is in P.
Since f(x) is continuous on [0,c], it takes on a maximum value there: let M= max f(x) on [0,c]. Further, since f is positive on (0, c), M> 0. Since, for all i, pi is differentiable on [0, c] it not only takes on a maximum value but that maximum value occurs either at an endpoint (0 or c) or in the interior where p'i(x)= 0. We have already seen that pi is 0 at 0 and c, for all i, (and only at x= 0 or c) and that p'i(x)= pi-1(x)p0(x). p'i(x)= 0 only where p0(x)= m- 2nx= 0 or x= m/2n= c/2. pi(m/2n)= \frac{\left(\frac{m^2}{4n}\right)^i}{i!}. Since that is positive, that is the maximum value of pi on [0, c].

Now we can prove:
\int_0^c f(x)p_i(x)dx\le \int_0^cM\frac{\left(\frac{m^2}{4n}\right)^i}{i!}dx= Mc\frac{\left(\frac{m^2}{4n}\right)^i}{i!}
That is a constant times a constant to the i power, divided by i!. As i goes to infinity, the factorial dominates and the limit is 0- we can make that as small as we please:
Therefore, Statement A:
For some i, \int_0^c f(x)p_i(x)dx&lt; \frac{1}{2}.
But since f(x) and all pi(x) are positive on (0, c) (every pi is 0 only at 0 and c and is positive at c/2),
\int_0^cf(x)p_i(x)dx is a positive integer and so (statement B) must be larger than or equal to 1 for all i. That contradicts statement A and so the theorem is true.
 
Last edited by a moderator:
Thanks for posting that, I've never seen a proof for 'lemma 1'.
 
Hey thanks For that!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top