MHB How can we show the other direction?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Direction
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hello! :o

I want to prove the following lemma:

$t^n-1$ divides $t^m-1$ in $F[t, t^{-1}]$ if and only if $n$ divides $m$ in $\mathbb{Z}$.

I have done the following:

$\Leftarrow $ :

$n\mid m \Rightarrow n=km, k \in \mathbb{Z}$

$t^n-1=t^{km}-1=(t^m)^k-1=(t^m-1)(t^{m(k-1)}+\dots +1)$

So, $t^n-1\mid t^m-1$.

Is this correct?

How could we show the other direction?
 
Last edited by a moderator:
Physics news on Phys.org
Hi mathmari,

Your work is correct so far. To prove the converse, use the division algorithm to express $m = nq + r$, where $q$ and $r$ are integers with $0 \le r < n$. Since $t^n-1\, |\, t^m - 1$, then $t^m \equiv 1\pmod{t^n - 1}$. Also $t^n \equiv 1\pmod{t^n -1}$ (as $t^n - 1\, |\, t^n - 1$). So $t^m \equiv t^{nq + r}\pmod{t^n - 1}$ $\implies$ $1 \equiv t^r \pmod{t^n - 1}$. Therefore $t^n - 1\, |\, t^r - 1$. If $r \neq 0$, then the latter condition implies $n \le r$, contradicting the inequality $r < n$. So $r = 0$, which gives $m = nq$. Consequently, $n\, |\, m$.
 
Euge said:
Your work is correct so far. To prove the converse, use the division algorithm to express $m = nq + r$, where $q$ and $r$ are integers with $0 \le r < n$. Since $t^n-1\, |\, t^m - 1$, then $t^m \equiv 1\pmod{t^n - 1}$. Also $t^n \equiv 1\pmod{t^n -1}$ (as $t^n - 1\, |\, t^n - 1$). So $t^m \equiv t^{nq + r}\pmod{t^n - 1}$ $\implies$ $1 \equiv t^r \pmod{t^n - 1}$. Therefore $t^n - 1\, |\, t^r - 1$. If $r \neq 0$, then the latter condition implies $n \le r$, contradicting the inequality $r < n$. So $r = 0$, which gives $m = nq$. Consequently, $n\, |\, m$.
I see... Thank you very much! (Mmm)
 
mathmari said:
Hello! :o

I want to prove the following lemma:

$t^n-1$ divides $t^m-1$ in $F[t, t^{-1}]$ if and only if $n$ divides $m$ in $\mathbb{Z}$.

I have done the following:

$\Leftarrow $ :

$n\mid m \Rightarrow n=km, k \in \mathbb{Z}$

$t^n-1=t^{km}-1=(t^m)^k-1=(t^m-1)(t^{m(k-1)}+\dots +1)$

So, $t^n-1\mid t^m-1$.

Is this correct?
That argument is basically correct. But notice that you have $m$ and $n$ the wrong way round. If $n$ divides $m$ then $m=nk$, not $n=mk$.
 
Opalg said:
That argument is basically correct. But notice that you have $m$ and $n$ the wrong way round. If $n$ divides $m$ then $m=nk$, not $n=mk$.
Oh, you're right! Thank you! (Mmm)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 23 ·
Replies
23
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
726
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
804
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 26 ·
Replies
26
Views
690