Undergrad How can you find the best angle and range for a projectile shot from a building?

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
To determine the optimal angle and range for a projectile shot from a building, the angle that maximizes range is given by the formula α = cos⁻¹(√((2gh + v²)/(2gh + 2v²))). The maximum range can be calculated using the equation d = (v/g)√(2gh + v²). The solution involves complex algebra, which is essential for deriving these formulas accurately. A user named Rido12 successfully solved the problem, highlighting the importance of detailed calculations. Understanding these principles is crucial for effectively analyzing projectile motion in physics.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here's this week's problem!

_________________

Problem. A projectile is shot from the edge of a building of height $h$ with initial speed $v$ at an angle $\alpha$ that gives the greatest range $d$. Show that $$\alpha = \cos^{-1}\left(\sqrt{\frac{2gh + v^2}{2gh + 2v^2}}\right) \quad \text{and} \quad d = \frac{v}{g}\sqrt{2gh + v^2}.$$
_________________Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Last edited:
Physics news on Phys.org
This week's problem was correctly solved by Rido12. You can find his solution below.

Assuming that air friction is negligible and the acceleration is constant, $g$. Thus, we have the following two equations:
$$x=v_xt+\frac{1}{2}a_xt^2+x_0=v_xt $$
$$y=v_yt+\frac{1}{2}a_yt^2+h$$

Now, the projectile will reach the ground at $y=0$, so solving the second equation for t, and taking the positive root, we obtain: (where $g=-a$)
$$t=\frac{v\sin(\alpha)+\sqrt{v^2\sin(\alpha)+2gh}}{g}$$
Re-substituting $t$ into the first equation:

$$R=x=v\cos(\alpha)\left(\frac{v\sin\left({\alpha}\right)+\sqrt{v^2\sin^2\left({\alpha}\right)+2gh}}{g}\right)$$

Differentiating $R$, the range with respect to $\alpha$, we obtain:
$$\d{R}{\alpha}=\frac{v^2\sin\left({\alpha}\right)\cos^2\left({\alpha}\right)}{\sqrt{v^2\sin^2\left({\alpha}\right)+2gh}}+v\left(\cos^2\left({\alpha}\right)-\sin^2\left({\alpha}\right)\right)-\sin\left({\alpha}\right)\sqrt{v^2\sin^2\left({\alpha}\right)+2gh}$$

Simplifying and setting equal to $0$:

$$\sin(\alpha)=\frac{v}{\sqrt{2v^2+2gh}}$$
$$\cos(\alpha)=\cos\left({\sin^{-1}\left({\frac{v}{\sqrt{2v^2+2gh}}}\right)}\right)=\sqrt{\frac{2gh+v^2}{2gh+2v^2}}$$
$$\alpha=\cos^{-1}\left({\sqrt{\frac{2gh+v^2}{2gh+2v^2}}}\right)$$

Now, re-substituting into the range equation $R=v\cos(\alpha)\left(\frac{v\sin\left({\alpha}\right)+\sqrt{v^2\sin^2\left({\alpha}\right)+2gh}}{g}\right)$, where $\sin(\alpha)=\frac{v}{\sqrt{2v^2+2gh}}$ and $\cos(\alpha)=\sqrt{\frac{2gh+v^2}{2gh+2v^2}}$ : (the algebra is tedious and has therefore been omitted)
$$d = \frac{v}{g}\sqrt{2gh + v^2}$$
as required.

Even though the general method behind this solution is sound, the missing algebra is nontrivial and very crucial to this problem. I'll show a method of finding $\alpha$ below:

I'll start with the expression

$$\frac{dR}{d\alpha} = \frac{v^2}{g}\left\{\cos^2 \alpha + \frac{\sin \alpha \cos^2 \alpha}{\sqrt{\sin^2 \alpha + \frac{2gh}{v^2}}} - \sin^2 \alpha - \sin \alpha \sqrt{\sin^2 \alpha + \frac{2gh}{v^2}}\right\}.$$

Setting $\frac{dR}{d\alpha} = 0$, and letting $\ell = 2gh/v^2$ and $u = \cos^2\alpha$, we have

$$u + u\sqrt{\frac{1 - u}{1 - u + \ell}} - (1 - u) - \sqrt{1 - u} \sqrt{1 - u + \ell} = 0$$

$$(2u - 1) + \sqrt{1 - u}\left(\frac{u}{\sqrt{1 - u + \ell}} - \sqrt{1 - u + \ell}\right) = 0$$

$$(2u - 1) + \sqrt{1 - u} \left(\frac{u - (1 - u + \ell)}{\sqrt{1 - u + \ell}}\right) = 0$$

$$(2u - 1) + \sqrt{1 - u} \left(\frac{2u - 1 - \ell}{\sqrt{1 - u + \ell}}\right) = 0$$

$$\frac{1 - u}{1 - u + \ell} (2u - 1 - \ell)^2 = (1 - 2u)^2$$

$$\frac{1 - u}{1 - u + \ell}[(2u - 1)^2 - 2\ell(2u - 1) + \ell^2] = (2u - 1)^2 (1 - u + \ell)$$

$$(1 - u)[\ell^2 - 2\ell(2u - 1)] = (2u - 1)^2 \ell$$

$$\ell(1 - u)[\ell - 2(2u - 1)] = (2u - 1)^2\ell$$

$$(1 - u)[(2u - 1)^2 - 2\ell(2u - 1) + \ell^2] = (1 - 2u)^2 (1 - u + \ell)$$

$$(1 - u)[\ell^2 - 2\ell(2u - 1)] = (2u - 1)^2\ell$$

$$\ell^2(1 - u) - 2\ell(2u - 1)(1 - u) = (2u - 1)^2 \ell$$

$$\ell^2 - \ell^2 u - 2\ell[2u - 1 - 2u^2 + u] = (4u^2 - 4u + 1)\ell$$

$$\ell^2 - \ell^2 u - 4\ell u + 2\ell + 4u^2\ell - 2\ell u = 4u^2 \ell - 4u\ell + \ell$$

$$\ell^2 - \ell^2 u + \ell - 2\ell u = 0$$

$$\ell - \ell u + 1 - 2u = 0$$

$$(\ell + 1) - (\ell + 2)u = 0$$

$$u = \frac{\ell + 1}{\ell + 2}$$

$$\cos^2 \alpha = \frac{\ell + 1}{\ell + 2}$$

$$\cos \alpha = \sqrt{\frac{\ell + 1}{\ell + 2}}$$

$$\cos \alpha = \sqrt{\frac{\frac{2gh}{v^2} + 1}{\frac{2gh}{v^2} + 2}}$$

$$\cos \alpha = \sqrt{\frac{2gh + v^2}{2gh + 2v^2}}$$

$$\alpha = \cos^{-1} \sqrt{\frac{2gh + v^2}{2gh + 2v^2}}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K