xSilentShuriken
- 3
- 0
mathmari said:First you have to multiply through the parentheses on the left. Then you have to bring all the terms that are related to $x$ to the left side of the equation and all the constant terms to the right side. Then you can solve for $x$.
xSilentShuriken said:Can you show me with the numbers?
How does the negative 1/9 and the 1/3 equal to negative 7/9mathmari said:Sure! Multiplying through the parentheses:
\begin{align*}-\frac{1}{9}(x-27)+\frac{1}{3}(x+3)=x-17 & \Rightarrow -\frac{1}{9}\left (x+(-27)\right )+\frac{1}{3}(x+3)=x-17 \\ & \Rightarrow \left (-\frac{1}{9}\right )x+\left (-\frac{1}{9}\right )\cdot (-27)+\frac{1}{3}x+\frac{1}{3}\cdot 3=x-17 \\ & \Rightarrow -\frac{1}{9}x+3+\frac{1}{3}x+1=x-17 \end{align*}
Bringing all the terms that are related to $x$ to the left side of the equation and all the constant terms to the right side:
\begin{align*}-\frac{1}{9}x+3+\frac{1}{3}x+1=x-17 & \Rightarrow -\frac{1}{9}x+\frac{1}{3}x-x=-17-1-3 \\ & \Rightarrow \left (-\frac{1}{9}+\frac{1}{3}-1\right )x=-21 \\ & \Rightarrow -\frac{7}{9}x=-21\end{align*}
Solving for $x$ by dividing the equation by the coefficient of $x$:
\begin{equation*}-\frac{7}{9}x=-21 \Rightarrow x=\frac{-21}{-\frac{7}{9}} \Rightarrow x=\frac{21}{\frac{7}{9}} \Rightarrow x=21\cdot \frac{9}{7} \Rightarrow x=27\end{equation*}
xSilentShuriken said:How does the negative 1/9 and the 1/3 equal to negative 7/9