How did the textbook get this answer? (satellite motion question)

  • Thread starter Thread starter httplol
  • Start date Start date
  • Tags Tags
    Satellite motion
Click For Summary
The discussion centers on solving a satellite motion problem using the formula T = 2πr/v. The initial calculations for velocity and radius are presented, with a suggestion to use the Earth's radius for the satellite's orbit radius in part B. Participants agree that applying the result from part A, specifically v = √(GM/r), into the equation for T is the correct approach. This method allows for solving for the radius and subsequently the velocity. The conversation highlights the importance of consistent radius usage in satellite motion calculations.
httplol
Messages
2
Reaction score
3
Homework Statement
Suppose we want to place a weather satellite into a circular orbit 300 km above the earth's surface. The earth's radius is 6380 km= 6.38E6 m, and its mass is 5.98E24 kg
A. What speed, period, and radial acceleration must it have?
B. Find the speed and orbit radius for an earth satellite that has a period of 1 day (86400 s).
Relevant Equations
(all answers are rounded) I understand how to get part A as
v= sqrt((6.67E-11*5.98E24)/(3.0E5+6.38E6))= 7730 m/s
T= 2π(6.68E6)/7730= 5430 s
a= (7730^2)/6.68E6= 8.95 m/s^2
I don't know what I'm doing wrong, but I'm not getting the same answer as the textbook for part B (v= 3.07E3 m/s; r= 4.23E7 m). Can someone please explain how to do part B?
Below is my attempt at the problem:
T= 86400= 2πr/v
v= 2π(6.68E6)/86400= 4.86E7 m/s
r= (86400)(7730)/2π= 1.06E8 m
 
Physics news on Phys.org
It seems to me that you are using the Earth's radius as the satellite's orbit radius for part B. You are correct in your approach to part A. I suggest doing the same in part B.

take your result from part A (namely ##v = \sqrt{\frac{GM}{r}}##) and plug it into ##T = \frac{2 \pi r}{v}## to get

##T = 2 \pi r \sqrt{\frac{r}{GM}}## solve for ##r## and then solving for ##v## is straight forward.
 
All hail PhDeezNutz!
 
  • Haha
  • Like
Likes SammyS, berkeman and PhDeezNutz
Thread 'Chain falling out of a horizontal tube onto a table'
My attempt: Initial total M.E = PE of hanging part + PE of part of chain in the tube. I've considered the table as to be at zero of PE. PE of hanging part = ##\frac{1}{2} \frac{m}{l}gh^{2}##. PE of part in the tube = ##\frac{m}{l}(l - h)gh##. Final ME = ##\frac{1}{2}\frac{m}{l}gh^{2}## + ##\frac{1}{2}\frac{m}{l}hv^{2}##. Since Initial ME = Final ME. Therefore, ##\frac{1}{2}\frac{m}{l}hv^{2}## = ##\frac{m}{l}(l-h)gh##. Solving this gives: ## v = \sqrt{2g(l-h)}##. But the answer in the book...

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 12 ·
Replies
12
Views
19K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
4
Views
2K
Replies
35
Views
5K
  • · Replies 26 ·
Replies
26
Views
7K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K