How Do Fourier Integral Operators Work in Mathematical Analysis?

Click For Summary
Fourier integral operators are being explored, particularly the operator defined by an oscillating integral involving a phase function and an amplitude. The operator is noted to be well-defined in the context of pseudodifferential operators. A key goal is to demonstrate that a specific operator, L, behaves like \(\mathcal{O}(<\theta>^{-k})\) using integration by parts. Participants in the discussion express a lack of clarity on how to start this proof and seek further insights or rewording of the original query. The conversation highlights the complexities involved in proving properties of Fourier integral operators.
super_al57
Messages
3
Reaction score
0
Hi everybody! I'm studying the Fourier integral operators but I can't resolve a pass. I'm considering the following operator:
$$Au(x)=\frac{1}{{(2\pi h)}^{n'}}\int_{\mathbb{R}_y^m\times\mathbb{R}_\theta^{n'}} e^{i\Psi(x,y,\theta)/h}a(x,y,\theta,h)u(y)\, dy\, d\theta$$ where $$Au\in C^0 (\mathbb{R}^m)$$. I know that $$Au\in C^0 (\mathbb{R}^m)$$ is well defined as oscillating integral if I use the pseudodifferential operator $$L=\frac{1}{1+\mid\nabla_{y,\theta}\Psi\mid^2}(1+h\nabla_y\bar{\Psi}D_y+h\nabla_{\theta}\bar{\Psi}D_{\theta})$$. I have to demonstrate, using integration by parts, that $$L=\mathcal{O}(<\theta>^{-k})$$.
Could anyone help me? Thanks
 
Physics news on Phys.org
Thanks for the post! Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
 
Greg Bernhardt said:
Thanks for the post! Sorry you aren't generating responses at the moment. Do you have any further information, come to any new conclusions or is it possible to reword the post?
:L I have no idea about how to begin. And I have no further information.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K