MHB How do g(x,t) and J_n(x) relate to the identity involving Bessel functions?

  • Thread starter Thread starter Another1
  • Start date Start date
  • Tags Tags
    Relationship
Click For Summary
The discussion centers on the relationship between the function g(x,t) and Bessel functions J_n(x), specifically how to demonstrate the identity involving their squares. It is established that g(x,t) can be expressed as a series involving Bessel functions, and bounds for J_0(x) and J_n(x) are provided. The orthogonality of Bessel functions is highlighted, suggesting a potential method to prove the identity involving their squared terms. Participants are encouraged to explore this orthogonality to derive the desired result. The conversation emphasizes the mathematical properties and relationships of Bessel functions in the context of the given identity.
Another1
Messages
39
Reaction score
0
$$g(x,t) = e^{(\frac{x}{2})(t-\frac{1}{t})}=\sum_{n=-\infty}^{\infty}J_{n}(x)t^{n}$$

and

$$\left| J_{0}(x) \right|\le 1 $$ and $$ \left| J_{n}(x) \right|\le \frac{1}{\sqrt{2}} $$

how to show that

1=$$(J_{0}(x))^{2}+2(J_{1}(x))^{2}+2(J_{2}(x))^{2}+...$$

I don't have idea
 
Last edited:
Mathematics news on Phys.org
Re: [please help]Bessel function

Another said:
$$g(x,t) = e^{(\frac{x}{2})(t-\frac{1}{t})}=\sum_{n=-\infty}^{\infty}J_{n}(x)t^{n}$$

and

$$\left| J_{0}(x) \right|\le 1 $$ and $$ \left| J_{n}(x) \right|\le \frac{1}{\sqrt{2}} $$

how to show that

1=$$(J_{0}(x))^{2}+2(J_{1}(x))^{2}+2(J_{2}(x))^{2}+...$$

I don't have idea
I haven't done the whole thing but note that Bessel functions are orthogonal:
[math]\int _0 ^1 J_{\nu} \left ( \alpha_{\nu ~ m} x \right ) ~ J_{\nu } \left ( \alpha_{\nu ~ n} x \right ) ~x ~dx = \frac{1}{2} \left [ J_{\nu + 1} \left ( \alpha _{\nu ~ m} \right ) \right ] ^2 \delta_ {m~n}[/math]

Does this give you any ideas?

-Dan