MHB How do g(x,t) and J_n(x) relate to the identity involving Bessel functions?

  • Thread starter Thread starter Another1
  • Start date Start date
  • Tags Tags
    Relationship
AI Thread Summary
The discussion centers on the relationship between the function g(x,t) and Bessel functions J_n(x), specifically how to demonstrate the identity involving their squares. It is established that g(x,t) can be expressed as a series involving Bessel functions, and bounds for J_0(x) and J_n(x) are provided. The orthogonality of Bessel functions is highlighted, suggesting a potential method to prove the identity involving their squared terms. Participants are encouraged to explore this orthogonality to derive the desired result. The conversation emphasizes the mathematical properties and relationships of Bessel functions in the context of the given identity.
Another1
Messages
39
Reaction score
0
$$g(x,t) = e^{(\frac{x}{2})(t-\frac{1}{t})}=\sum_{n=-\infty}^{\infty}J_{n}(x)t^{n}$$

and

$$\left| J_{0}(x) \right|\le 1 $$ and $$ \left| J_{n}(x) \right|\le \frac{1}{\sqrt{2}} $$

how to show that

1=$$(J_{0}(x))^{2}+2(J_{1}(x))^{2}+2(J_{2}(x))^{2}+...$$

I don't have idea
 
Last edited:
Mathematics news on Phys.org
Re: [please help]Bessel function

Another said:
$$g(x,t) = e^{(\frac{x}{2})(t-\frac{1}{t})}=\sum_{n=-\infty}^{\infty}J_{n}(x)t^{n}$$

and

$$\left| J_{0}(x) \right|\le 1 $$ and $$ \left| J_{n}(x) \right|\le \frac{1}{\sqrt{2}} $$

how to show that

1=$$(J_{0}(x))^{2}+2(J_{1}(x))^{2}+2(J_{2}(x))^{2}+...$$

I don't have idea
I haven't done the whole thing but note that Bessel functions are orthogonal:
[math]\int _0 ^1 J_{\nu} \left ( \alpha_{\nu ~ m} x \right ) ~ J_{\nu } \left ( \alpha_{\nu ~ n} x \right ) ~x ~dx = \frac{1}{2} \left [ J_{\nu + 1} \left ( \alpha _{\nu ~ m} \right ) \right ] ^2 \delta_ {m~n}[/math]

Does this give you any ideas?

-Dan
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top