Another1
- 39
- 0
$$g(x,t) = e^{(\frac{x}{2})(t-\frac{1}{t})}=\sum_{n=-\infty}^{\infty}J_{n}(x)t^{n}$$
and
$$\left| J_{0}(x) \right|\le 1 $$ and $$ \left| J_{n}(x) \right|\le \frac{1}{\sqrt{2}} $$
how to show that
1=$$(J_{0}(x))^{2}+2(J_{1}(x))^{2}+2(J_{2}(x))^{2}+...$$
I don't have idea
and
$$\left| J_{0}(x) \right|\le 1 $$ and $$ \left| J_{n}(x) \right|\le \frac{1}{\sqrt{2}} $$
how to show that
1=$$(J_{0}(x))^{2}+2(J_{1}(x))^{2}+2(J_{2}(x))^{2}+...$$
I don't have idea
Last edited: