Engineering How do I draw the Bode diagram of this transfer function?

Click For Summary
SUMMARY

The forum discussion focuses on drawing the Bode diagram for a low-pass filter characterized by the transfer function T(Ω) = 1 / (1 - Ω² + j3Ω). The user successfully calculated the absolute value |T(Ω)| and the phase arg(T(Ω)), identifying the filter as a second-order low-pass filter. To sketch the Bode diagram, the user is advised to use normalized angular frequency Ω = ωRC, allowing for a general representation without specific RC values. Interpolation between calculated values is recommended for a smoother graph.

PREREQUISITES
  • Understanding of transfer functions and voltage dividers
  • Familiarity with Bode plots and low-pass filter characteristics
  • Knowledge of complex numbers and their representation in electrical engineering
  • Basic skills in interpolation methods for data estimation
NEXT STEPS
  • Learn about Bode plot normalization techniques for frequency response analysis
  • Study interpolation methods, specifically linear interpolation, for estimating values
  • Explore the implications of RC values on filter behavior and frequency response
  • Research advanced techniques for sketching Bode diagrams for various filter types
USEFUL FOR

Electrical engineers, students studying control systems, and anyone involved in filter design and frequency response analysis will benefit from this discussion.

arhzz
Messages
284
Reaction score
58
Homework Statement
Draw the bodediagram
Relevant Equations
-
Hello! I have this filter here

Snimka zaslona 2022-06-08 143551.png


a)
Calculate the transfer function T(Ω) = Ua/Ue using voltage dividers.For this, use the normalized angular frequency Ω = ωRC and bring the result into the form ##T(Ω) = \frac{A+jB}{C+jD} ## . The result must not contain any double fractions.

I was able to that I have redrawn the circuit and used a double voltage divider to get this result
$$ \frac {1}{ 1 - Ω^2 + j3Ω} $$ and I think it should be correct

b)In general, calculate the absolute value |T(Ω)| and the phase arg(T(Ω)) of the transfer function. It must not be conjugated complex.

So for the absolute value I did this $$ sqrt{\frac{1}{(1-Ω^2)^2+(3Ω)^2}}$$ since its only general. And for the phase I think it should be
##arg(T(Ω)) = arctan(\frac{Im}{Re}) - arctan(\frac{Im}{Re})## where the first arctan is the one from the nummerator and the second one from the denominator. Since the first one is 0 what remains is ; ## - arctan(\frac{3Ω}{1-Ω^2}) ##

c) What kind and order of filter does the above circuit represent?

It is a low pass , 2nd order

d) Calculate the 3 dB limit frequency Ωg with |T max| = |T(Ω → 0)|.

I was also able to this since $$|T(Ω)| = \frac{Tmax){\sqrt{2}} $$ and after solving it I get that Ωg = 0,37

Now up to this point I had no real issues and all of my solutions match the one from the book. But here is where I am kind of stumped

e) sketch the Bode diagram (magnitude and phase) as a function of the normalized angular frequencyΩ. Calculate the magnitude and phase of the transfer function for ̈Ω=[0.1, 0.4, 0.6, 0.8, 1, 2, 4,90]and interpolate the values in between.Continue to draw the asymptote in the diagramm.

Now I am not really sure how to do this. I mean I could just plug in the values for omega into the equations but I have no cutoff frequency. I know what a bode diagramm of a low pass filter looks like and how to calculate the cutoff frequency of one but I have no values for C and R. Can I draw it without the cutoff frequency? Also I am not sure how to interpolate the values in between (we have not done it before in class). For the asymptote I know what it is (at least what I've learned in mathematics) it is susposed to be the line that the graph approaches but never touches. I am guessing this will be apperent when I draw the graph.

So how should I approach this? Should I just plug in the values draw and see what kind of graph comes out? Disregarding the cutoff frequency?
 
Physics news on Phys.org
First, sorry, I didn't check your work for the first parts; too busy. But it looks reasonable.

arhzz said:
Homework Statement:: Draw the bodediagram
Relevant Equations:: -

Now I am not really sure how to do this. I mean I could just plug in the values for omega into the equations but I have no cutoff frequency. I know what a bode diagramm of a low pass filter looks like and how to calculate the cutoff frequency of one but I have no values for C and R. Can I draw it without the cutoff frequency?

As you said, you can't plot the response versus frequency without knowing the RC value. That's OK, it's built into the problem. You can just make a bode plot that has log(Ω) on the x-axis instead of log(f) [frequency]. We call this normalization, which can be useful to describe a whole class of problems. They've already defined a value that every frequency is referenced to, Ω=ωRC, so your frequency is f= Ω/(2πRC). Then put a label on your graph that states that definition. This would allow another engineer, who does know the value of his particular RC, to easily relabel the graph in Hertz for his case.

Here is an example for a different circuit (your Ω is the same as my ω).

LCR2p2.jpg
 
Interpolation is a straightforward method of estimating values between your data points. Unless someone says otherwise you can assume they mean matching a linear function to two data points and using that to find intermediate values. This should be easy to learn about with a web search. Research it and ask if there's something you find confusing in the explanation.
 
DaveE said:
First, sorry, I didn't check your work for the first parts; too busy. But it looks reasonable.
As you said, you can't plot the response versus frequency without knowing the RC value. That's OK, it's built into the problem. You can just make a bode plot that has log(Ω) on the x-axis instead of log(f) [frequency]. We call this normalization, which can be useful to describe a whole class of problems. They've already defined a value that every frequency is referenced to, Ω=ωRC, so your frequency is f= Ω/(2πRC). Then put a label on your graph that states that definition. This would allow another engineer, who does know the value of his particular RC, to easily relabel the graph in Hertz for his case.

Here is an example for a different circuit (your Ω is the same as my ω).

View attachment 302584
Great answer! So now if I want the values of the diagramm (magnitude and phase) i can just plug in the given values in the formulas and when drawing the diagramm add the label that its normalized on the x axis?
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K