How Do Right-Side Homotopies Affect Homotopy Equivalence?

  • Thread starter Thread starter Ben2
  • Start date Start date
  • Tags Tags
    Equivalence Map
Click For Summary
A map f: X-->Y is a homotopy equivalence if there exists a map g: Y-->X such that fg is homotopic to the identity on X and gf is homotopic to the identity on Y. The discussion centers on proving that if f is homotopic to the identity and h is another homotopy, then f can be expressed as f = f(1)h, where the right homotopy is considered. The author explores whether this involves the associativity of homotopies and presents equations to demonstrate transitivity, reflexive, and symmetric properties. The provided equations show that the necessary conditions for homotopy equivalence are satisfied. Overall, the discussion seeks clarity on handling right-side homotopies in the context of homotopy equivalence.
Ben2
Messages
37
Reaction score
9
Homework Statement
"Show that the composition of homotopy equivalences X-->Y and Y-->Z is a homotopy equivalence X-->Z..."
Relevant Equations
F(x,t) = f_t(x)
"[A] map f: X-->Y is called a \mathbf{homotopy~equivalence} if there is a map g: Y-->X such that fg\cong\mathbb{1} and gf\cong\mathbb{1}," where "cong" means "is homotopic." "The spaces X and Y are said to be \mathbf{homotopy~equivalent}..." Additional definitions are in Hatcher, "Algebraic Topology", of which this is part of Exercise 3(a), p. 18. My difficulty is proving that if f\cong\mathbb{1} and h is another homotopy, then f = f\mathbb{1}h\congh. That is, how do we handle an arbitrary homotopy on the RIGHT? Does this involve "associativity" of homotopies? Thanks!
 
Physics news on Phys.org
Apologies for posting! With the conditions given, (hf)(gk) = h(fg)k\congh(\mathbb{1})k = hk\cong\mathbb{1} and (fh)(kg) = f(hk)g\congf\mathbb{1}g = fg\cong\mathbb{1}. This handles transitivity, while the reflexive and symmetric properties are routine. Thanks to everyone who read this!
 
Ben2 said:
Apologies for posting! With the conditions given, (hf)(gk) = h(fg)k\congh(\mathbb{1})k = hk\cong\mathbb{1} and (fh)(kg) = f(hk)g\congf\mathbb{1}g = fg\cong\mathbb{1}. This handles transitivity, while the reflexive and symmetric properties are routine. Thanks to everyone who read this!
Please wrap your Latex with ## or otherwise for easier reading.
 
Ben2 said:
Apologies for posting! With the conditions given, ##(hf)(gk) = h(fg)k\cong h(\mathbb{1})k = hk\cong\mathbb{1}## and## (fh)(kg) = f(hk)g\cong f\mathbb{1}g = fg\cong\mathbb{1}##. This handles transitivity, while the reflexive and symmetric properties are routine. Thanks to everyone who read this!
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
Replies
2
Views
1K
Replies
9
Views
2K
  • · Replies 25 ·
Replies
25
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 26 ·
Replies
26
Views
675