MHB How do we get to this differential equation?

AI Thread Summary
The discussion revolves around deriving the differential equation from an initial value problem involving height, gravitational force, and initial velocity. The participants explore how to express the original equation in dimensionless terms by introducing scaled variables for height and time. They confirm the relationships between the variables, leading to the transformation of the second derivative of height into a dimensionless form. The conversation emphasizes the importance of maintaining consistency in dimensional analysis while transitioning to dimensionless quantities. Ultimately, the participants successfully clarify the derivation process and the significance of scaling in the context of the problem.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

If we have the initial value problem

$$h''(t)=-\frac{R^2 g}{(h(t)+R)^2} \\ h(0)=0, h'(0)=V$$

we have the fundamental units: $T,L$ such that $T=[t], L=[h], L=[R], LT^{-1}=[V], LT^{-2}=[g]$ and we get the independent dimensionless quantities $\pi_1=\frac{h}{R}, \pi_2=\frac{t}{\frac{R}{V}}, \pi_3=\frac{V}{\sqrt{gR}}$

If we take $\pi_1=\frac{h}{R}$ and $\pi_2=\frac{t}{\frac{R}{V}}$ we have the scaling:

$$\overline{h}=\frac{h}{R}, \overline{t}=\frac{t}{\frac{R}{V}}$$

Then the initial value problem is written equivalently

$$\epsilon \overline{h}''(\overline{t})=-\frac{1}{(1+\overline{h}(\overline{t}))^2} \\ \overline{h}(0)=0, \overline{h}'(0)=1 \\ \text{ where } \epsilon=\frac{V^2}{Rg}$$

Could you explain me how we get to $\epsilon \overline{h}''(\overline{t})=-\frac{1}{(1+\overline{h}(\overline{t}))^2}$ ? (Thinking)
 
Mathematics news on Phys.org
Hi! (Emo)

How about substituting the relationships between h and $\bar h$, t and $\bar t$, and g and $\bar g$ in the original equation? (Wondering)
 
I like Serena said:
Hi! (Emo)

How about substituting the relationships between h and $\bar h$, t and $\bar t$, and g and $\bar g$ in the original equation? (Wondering)

Is it as follows?

$h(t)= R \overline{h}\left( \frac{R}{V} \overline{t}\right) \\ h'(t)=\frac{\partial}{\partial{\overline{t}}} \left( R \overline{h} \left( \frac{R}{V} \overline{t} \right)\right) \frac{d \overline{t}}{dt} \\ h'(t)=\frac{V}{R} \frac{\partial}{\partial{\overline{t}}} \left( R \overline{h}\left( \frac{R}{V} \overline{t}\right) \right)\\ h''(t)=\frac{\partial}{\partial{\overline{t}}} \left( \frac{V}{R} \frac{\partial}{\partial{\overline{t}}}\left( R \overline{h}\left( \frac{R}{V} \overline{t}\right) \right)\right) \frac{V}{R} \\= \frac{V^2}{R^2} \frac{\partial^2}{\partial{\overline{t}}^2} \left( R \overline{h}\left( \frac{R}{V} \overline{t}\right) \right) = \frac{V^2}{R^2} R \overline{h}''\left( \frac{R}{V} \overline{t}\right) \frac{R^2}{V^2}= R \overline{h}'' \left( \frac{R}{V} \overline{t}\right)$Or have I done something wrong? :confused:
 
evinda said:
Is it as follows?

$h(t)= R \overline{h}\left( \frac{R}{V} \overline{t}\right) \\
h'(t)=\frac{\partial}{\partial{\overline{t}}} \left( R \overline{h} \left( \frac{R}{V} \overline{t} \right)\right) \frac{d \overline{t}}{dt}$

Or have I done something wrong? :confused:

I believe that should be:
$$h(t)= R \bar{h}( \bar{t}) \\
h'(t)=\frac{d}{d{\bar{t}}} \left( R \bar{h} ( \bar{t} )\right) \cdot \frac{d \bar{t}}{dt}
= R \bar{h}'( \bar{t} ) \cdot \d {} t \left(\!\frac{t}{\frac RV}\!\right)
= V \bar{h}'( \bar{t} )
$$
That's because $\bar h$ is a function of $\bar t$ instead of $t$. (Wasntme)
 
I like Serena said:
I believe that should be:
$$h(t)= R \bar{h}( \bar{t}) \\
h'(t)=\frac{d}{d{\bar{t}}} \left( R \bar{h} ( \bar{t} )\right) \cdot \frac{d \bar{t}}{dt}
= R \bar{h}'( \bar{t} ) \cdot \d {} t \left(\!\frac{t}{\frac RV}\!\right)
= V \bar{h}'( \bar{t} )
$$
That's because $\bar h$ is a function of $\bar t$ instead of $t$. (Wasntme)

Could you explain me further why this equality holds: $h(t)= R \bar{h}( \bar{t})$ ? (Thinking)
 
evinda said:
Could you explain me further why this equality holds: $h(t)= R \bar{h}( \bar{t})$ ? (Thinking)

In the problem statement you have that the quantity $\bar h$ is scaled as $\bar h = \frac h R$, making it dimensionless.
Now we make $\bar h$ a function of the corresponding $\bar t$ variable that is expressed in the same set of dimensionless units. That is, $\bar h = \bar h(\bar t)$.
And we already had $h = h(t)$.

Thus $\bar h(\bar t) = \frac {h(t)}{R} \Rightarrow h(t) = R\bar h(\bar t)$. (Wasntme)
 
I like Serena said:
In the problem statement you have that the quantity $\bar h$ is scaled as $\bar h = \frac h R$, making it dimensionless.
Now we make $\bar h$ a function of the corresponding $\bar t$ variable that is expressed in the same set of dimensionless units. That is, $\bar h = \bar h(\bar t)$.
And we already had $h = h(t)$.

Thus $\bar h(\bar t) = \frac {h(t)}{R} \Rightarrow h(t) = R\bar h(\bar t)$. (Wasntme)

So $\bar h$ is dimensionless, so we can write it as a function of $\bar t$ since the latter is also dimesnionless, right?

And so we use this equality : $\bar t=\frac{t}{\frac{R}{V}}$ if we want to differentiate? (Thinking)
 
So is it then as follows?

$$h'(t)=R \frac{d}{dt}(\bar h(\bar t))= R \frac{d}{d \bar t}(\bar h (\bar t)) \frac{d \bar t}{dt}=R \bar h'(\bar t) \frac{V}{R}=V \bar h'(t)$$

$$h''(t)=V \frac{d}{d \bar t}(\bar h'(\bar t)) \frac{d \bar t}{dt}=\frac{V^2}{R} \bar h''(\bar t)$$

Or am I wrong? :confused:
 
evinda said:
So $\bar h$ is dimensionless, so we can write it as a function of $\bar t$ since the latter is also dimesnionless, right?

And so we use this equality : $\bar t=\frac{t}{\frac{R}{V}}$ if we want to differentiate? (Thinking)

evinda said:
So is it then as follows?

$$h'(t)=R \frac{d}{dt}(\bar h(\bar t))= R \frac{d}{d \bar t}(\bar h (\bar t)) \frac{d \bar t}{dt}=R \bar h'(\bar t) \frac{V}{R}=V \bar h'(t)$$

$$h''(t)=V \frac{d}{d \bar t}(\bar h'(\bar t)) \frac{d \bar t}{dt}=\frac{V^2}{R} \bar h''(\bar t)$$

Or am I wrong? :confused:

Yep! (Nod)
 
  • #10
I like Serena said:
Yep! (Nod)

Great! Thanks a lot! (Happy)
 
Back
Top