How do we get to this differential equation?

Click For Summary

Discussion Overview

The discussion revolves around deriving a specific differential equation from an initial value problem involving a second-order differential equation. The participants explore the relationships between dimensional analysis, scaling, and the transformation of variables to arrive at the equation.

Discussion Character

  • Exploratory, Technical explanation, Mathematical reasoning

Main Points Raised

  • One participant presents an initial value problem and introduces dimensionless quantities derived from the problem's parameters.
  • Another participant suggests substituting the relationships between the original variables and the dimensionless variables to derive the differential equation.
  • Several participants engage in verifying the transformations of the variables, particularly focusing on the relationships between \( h(t) \), \( \overline{h} \), and \( \overline{t} \).
  • There is a discussion about the correctness of the derivatives and the implications of scaling on the equations, with participants questioning and refining each other's steps.
  • One participant emphasizes that \( \overline{h} \) is dimensionless and can be expressed as a function of \( \overline{t} \), leading to the equation \( h(t) = R \overline{h}(\overline{t}) \).
  • Another participant confirms the differentiation process and the resulting expressions for \( h'(t) \) and \( h''(t) \), seeking validation from others.

Areas of Agreement / Disagreement

Participants generally agree on the scaling and transformation of variables, but there are ongoing discussions about the correctness of specific steps in the differentiation process and the implications of these transformations.

Contextual Notes

Some participants express uncertainty about the correctness of their transformations and derivatives, indicating that the discussion is still in a state of exploration rather than resolution.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

If we have the initial value problem

$$h''(t)=-\frac{R^2 g}{(h(t)+R)^2} \\ h(0)=0, h'(0)=V$$

we have the fundamental units: $T,L$ such that $T=[t], L=[h], L=[R], LT^{-1}=[V], LT^{-2}=[g]$ and we get the independent dimensionless quantities $\pi_1=\frac{h}{R}, \pi_2=\frac{t}{\frac{R}{V}}, \pi_3=\frac{V}{\sqrt{gR}}$

If we take $\pi_1=\frac{h}{R}$ and $\pi_2=\frac{t}{\frac{R}{V}}$ we have the scaling:

$$\overline{h}=\frac{h}{R}, \overline{t}=\frac{t}{\frac{R}{V}}$$

Then the initial value problem is written equivalently

$$\epsilon \overline{h}''(\overline{t})=-\frac{1}{(1+\overline{h}(\overline{t}))^2} \\ \overline{h}(0)=0, \overline{h}'(0)=1 \\ \text{ where } \epsilon=\frac{V^2}{Rg}$$

Could you explain me how we get to $\epsilon \overline{h}''(\overline{t})=-\frac{1}{(1+\overline{h}(\overline{t}))^2}$ ? (Thinking)
 
Physics news on Phys.org
Hi! (Emo)

How about substituting the relationships between h and $\bar h$, t and $\bar t$, and g and $\bar g$ in the original equation? (Wondering)
 
I like Serena said:
Hi! (Emo)

How about substituting the relationships between h and $\bar h$, t and $\bar t$, and g and $\bar g$ in the original equation? (Wondering)

Is it as follows?

$h(t)= R \overline{h}\left( \frac{R}{V} \overline{t}\right) \\ h'(t)=\frac{\partial}{\partial{\overline{t}}} \left( R \overline{h} \left( \frac{R}{V} \overline{t} \right)\right) \frac{d \overline{t}}{dt} \\ h'(t)=\frac{V}{R} \frac{\partial}{\partial{\overline{t}}} \left( R \overline{h}\left( \frac{R}{V} \overline{t}\right) \right)\\ h''(t)=\frac{\partial}{\partial{\overline{t}}} \left( \frac{V}{R} \frac{\partial}{\partial{\overline{t}}}\left( R \overline{h}\left( \frac{R}{V} \overline{t}\right) \right)\right) \frac{V}{R} \\= \frac{V^2}{R^2} \frac{\partial^2}{\partial{\overline{t}}^2} \left( R \overline{h}\left( \frac{R}{V} \overline{t}\right) \right) = \frac{V^2}{R^2} R \overline{h}''\left( \frac{R}{V} \overline{t}\right) \frac{R^2}{V^2}= R \overline{h}'' \left( \frac{R}{V} \overline{t}\right)$Or have I done something wrong? :confused:
 
evinda said:
Is it as follows?

$h(t)= R \overline{h}\left( \frac{R}{V} \overline{t}\right) \\
h'(t)=\frac{\partial}{\partial{\overline{t}}} \left( R \overline{h} \left( \frac{R}{V} \overline{t} \right)\right) \frac{d \overline{t}}{dt}$

Or have I done something wrong? :confused:

I believe that should be:
$$h(t)= R \bar{h}( \bar{t}) \\
h'(t)=\frac{d}{d{\bar{t}}} \left( R \bar{h} ( \bar{t} )\right) \cdot \frac{d \bar{t}}{dt}
= R \bar{h}'( \bar{t} ) \cdot \d {} t \left(\!\frac{t}{\frac RV}\!\right)
= V \bar{h}'( \bar{t} )
$$
That's because $\bar h$ is a function of $\bar t$ instead of $t$. (Wasntme)
 
I like Serena said:
I believe that should be:
$$h(t)= R \bar{h}( \bar{t}) \\
h'(t)=\frac{d}{d{\bar{t}}} \left( R \bar{h} ( \bar{t} )\right) \cdot \frac{d \bar{t}}{dt}
= R \bar{h}'( \bar{t} ) \cdot \d {} t \left(\!\frac{t}{\frac RV}\!\right)
= V \bar{h}'( \bar{t} )
$$
That's because $\bar h$ is a function of $\bar t$ instead of $t$. (Wasntme)

Could you explain me further why this equality holds: $h(t)= R \bar{h}( \bar{t})$ ? (Thinking)
 
evinda said:
Could you explain me further why this equality holds: $h(t)= R \bar{h}( \bar{t})$ ? (Thinking)

In the problem statement you have that the quantity $\bar h$ is scaled as $\bar h = \frac h R$, making it dimensionless.
Now we make $\bar h$ a function of the corresponding $\bar t$ variable that is expressed in the same set of dimensionless units. That is, $\bar h = \bar h(\bar t)$.
And we already had $h = h(t)$.

Thus $\bar h(\bar t) = \frac {h(t)}{R} \Rightarrow h(t) = R\bar h(\bar t)$. (Wasntme)
 
I like Serena said:
In the problem statement you have that the quantity $\bar h$ is scaled as $\bar h = \frac h R$, making it dimensionless.
Now we make $\bar h$ a function of the corresponding $\bar t$ variable that is expressed in the same set of dimensionless units. That is, $\bar h = \bar h(\bar t)$.
And we already had $h = h(t)$.

Thus $\bar h(\bar t) = \frac {h(t)}{R} \Rightarrow h(t) = R\bar h(\bar t)$. (Wasntme)

So $\bar h$ is dimensionless, so we can write it as a function of $\bar t$ since the latter is also dimesnionless, right?

And so we use this equality : $\bar t=\frac{t}{\frac{R}{V}}$ if we want to differentiate? (Thinking)
 
So is it then as follows?

$$h'(t)=R \frac{d}{dt}(\bar h(\bar t))= R \frac{d}{d \bar t}(\bar h (\bar t)) \frac{d \bar t}{dt}=R \bar h'(\bar t) \frac{V}{R}=V \bar h'(t)$$

$$h''(t)=V \frac{d}{d \bar t}(\bar h'(\bar t)) \frac{d \bar t}{dt}=\frac{V^2}{R} \bar h''(\bar t)$$

Or am I wrong? :confused:
 
evinda said:
So $\bar h$ is dimensionless, so we can write it as a function of $\bar t$ since the latter is also dimesnionless, right?

And so we use this equality : $\bar t=\frac{t}{\frac{R}{V}}$ if we want to differentiate? (Thinking)

evinda said:
So is it then as follows?

$$h'(t)=R \frac{d}{dt}(\bar h(\bar t))= R \frac{d}{d \bar t}(\bar h (\bar t)) \frac{d \bar t}{dt}=R \bar h'(\bar t) \frac{V}{R}=V \bar h'(t)$$

$$h''(t)=V \frac{d}{d \bar t}(\bar h'(\bar t)) \frac{d \bar t}{dt}=\frac{V^2}{R} \bar h''(\bar t)$$

Or am I wrong? :confused:

Yep! (Nod)
 
  • #10
I like Serena said:
Yep! (Nod)

Great! Thanks a lot! (Happy)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K