How do we know the Hamiltonian is well-defined

  • Thread starter Thread starter andrewkirk
  • Start date Start date
  • Tags Tags
    Hamiltonian
AI Thread Summary
The discussion centers on the definition and derivation of the Hamiltonian from the Lagrangian using a Legendre transform. It raises concerns about whether the Hamiltonian is well-defined across different coordinate systems, as its formula relies on the chosen coordinates. The equivalence of equations of motion derived from different Lagrangians suggests that the Hamiltonian should also yield consistent results across transformations. The Lagrangian formulation is invariant under point transformations, while the Hamiltonian formulation maintains invariance under canonical transformations. This invariance supports the conclusion that the Hamiltonian's value does not depend on the coordinates used for its derivation.
andrewkirk
Science Advisor
Homework Helper
Insights Author
Gold Member
Messages
4,140
Reaction score
1,741
I have been reading about the derivation of the Hamiltonian from the Lagrangian using a Legendre transform. The Lagrangian is a variable whose value, by definition, is independent of the coordinates used to express it. (The Lagrangian is defined by means of a formula in one set of coordinates, and the formula for its value in any other set of coordinates is simply what you get from substituting the coordinate-transformation functions into the original formula).

The Hamiltonian is defined as the Legendre transform of the Lagrangian, with respect to a particular set of coordinates. The formula for that transform uses the chosen coordinates. So the Hamiltonian is not well-defined unless we can be certain that the value will be the same if we use any different set of coordinates to perform the Legendre transformation.

The derivations I have seen have not addressed this point. They just seem to assume the Hamiltonian will be well-defined.

Am I missing something obvious here? Is there a simple reason why the Hamiltonian's value will not depend on the coordinates used to derive it?
 
Physics news on Phys.org
When going from a Lagrangian formulation to a Hamiltonian one, the equations of motion remain equivalent. Consequently, if the equations of motion derived from L1 and L2 are equivalent, then the ones derived from H1 and H2 will also be equivalent.
 
The Lagrangian formulation of Hamilton's principle is invariant under point transformations (diffeomorphisms in configuration space), and the Hamiltonian formulation even under the larger group of canonical transformations (symplectomorphisms on phase space). This implies what Bill_K said about the equations of motion.
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top