How Do You Apply Zonal Spherical Harmonics in Electromagnetism Problems?

AI Thread Summary
The discussion focuses on applying Zonal Spherical Harmonics to solve electromagnetism problems, particularly involving boundary conditions where the potential is zero on a sphere and at infinity. Participants express difficulty in finding solutions and understanding how to incorporate Zonal Spherical Harmonics into their calculations. It is suggested to analyze the boundary conditions and equate the potential at the sphere's surface to zero. Additionally, it's noted that only the constant term contributes at infinity due to the lack of dependence on the angle. Overall, the conversation emphasizes the importance of boundary conditions in utilizing Zonal Spherical Harmonics effectively.
Zaitul Hidayat
Messages
3
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
I don't really understand how to find the solution. I've tried to find the solution in books and google but still can't find it. In general, the Question 1 the problem is using the method of Image charge and Induced surface charge density. but this time my professor changed it to something else. can you guys help me? Thank You.

Question 1.png


Question 2.png

Question 3.png
 
Physics news on Phys.org
Which books have you searched for a solution to problem 1?
 
But you can do this exercise by noticing the boundary condition: ##\varphi=0## on the sphere and ##\varphi=0## at infinity; and plugging the Zonal Spherical Harmonics.
 
MathematicalPhysicist said:
Which books have you searched for a solution to problem 1?
I'm not sure which book I read, because I just googled it. and I found some questions that are very similar but only different methods are used.
 
MathematicalPhysicist said:
But you can do this exercise by noticing the boundary condition: ##\varphi=0## on the sphere and ##\varphi=0## at infinity; and plugging the Zonal Spherical Harmonics.
but I still don't understand how I plugged the Zonal Spherical Harmonics into it :cry:
 
Zaitul Hidayat said:
but I still don't understand how I plugged the Zonal Spherical Harmonics into it :cry:
At ##r=R## you get ##\varphi(R,\theta)=0##, plug ##r=R## into the Zonal Spherical harmonic and equate to zero. For ##\varphi(r=\infty,\theta)=0##, notice that only ##P_0(\cos\theta)## contribution here, since there's no dependence on ##\cos \theta## in the boundary conditions.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top