bishy
- 13
- 0
Homework Statement
A 32 pound weight stretches 2 feet. Determine the amplitude and period of motion if the weight is released 1 foot above the equilibrium position with an initial velocity of 2 ft/s upward. How many complete vibrations will the weight have completed at the end of 4 pi seconds?
The Attempt at a Solution
Here is the solution I have come up with:
32 = 2k
k=16
x(0)=1 ft
x'(0) = -2 ft/s
m= 32/32 = 1 slug
\frac{dx^2}{d^2t} +16x = 0
m^2+16
solution to xc:
x(t)= A \cos{4x} + B\sin{4x}
with initial conditions:
x(t) = \cos{4x} - \frac{1}{2} \sin{4x}
therefore amplitude= \sqrt{1+\frac{1}{4}} = \frac{\sqrt{5}}{2}
and \tan{\phi} = 3
\phi = -1.1071 + \pi = 2.034
so my equation for the model is
x(t) = \frac{\sqrt{5}}{2} \sin{(4x+2.034)}
and I know for a complete vibration to occur I have to have 2n\pi + \frac{\pi}{2}
So 48.23 = \frac{(x-6)\pi}{2}
x is approximatly 25 which is about 6 revolutions.
in 4 pi seconds, the system has undergone approximatly 6 revolutions and the differential equation describing the system is
x(t) = \frac{\sqrt{5}}{2} \sin{(4x+2.034)}