How Do You Calculate the Point-Force Location for Unevenly Distributed Loads?

  • Thread starter Thread starter TSN79
  • Start date Start date
  • Tags Tags
    Distributed
Click For Summary
To calculate the point-force location for unevenly distributed loads, the centroid of the load shape determines where the total force acts. For triangular loads, the centroid is located one-third the base distance from the upright side. The total force can be calculated by multiplying the load by its length, similar to evenly distributed loads. When finding torque around a point, the length of the arm corresponds to the distance from that point to the centroid of the load. Understanding these principles is crucial for accurately analyzing static problems involving uneven loads.
TSN79
Messages
422
Reaction score
0
In static problems, an evenly distributed load can be made into a point-force by multiplying the load by its length, and so this point-force will now act in the center of the distributed load. This is cool, but I can't find out how to do the same thing with loads that are unevenly distributed, those who are often shown as triangles, often with no force on one end and some force on the other.

This page gives me a formula for determining the value of this point-force, but it does not tell me at which distance from one of the ends it acts!

http://images.google.no/imgres?imgu...ributed+load&start=20&svnum=10&hl=no&lr=&sa=N

If anyone can help me out I'll appreciate it!
 
Physics news on Phys.org
Is there a particular shape you're looking at for a distributed load? If you assume the x-axis is horizontal (like the page you linked to does), the x value of the centroid of the shape will give the x value of the point the total force acts on. There are bound to be loads of websites with the values of the centroids of different shapes.
 
Last edited by a moderator:
The length of the arm is definitely not 6.67 feet. The x value of the center of gravity of that distributed load is, however, 6.67 feet from the point A. For a right triangle, the center of gravity (centroid) is always 1/3 the base away from the upright side.
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
3
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
8K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
3
Views
5K