How Do You Evaluate the Sum of Reciprocal Factorial Pairs?

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
Click For Summary
SUMMARY

The discussion focuses on evaluating the sum of reciprocal factorial pairs represented by the formula $$\sum_{k=0}^{n}\dfrac{1}{(n-k)!(n+k)!}$$. Members lfdahl, kaliprasad, and noops provided correct solutions to this problem. The solutions highlight various approaches to simplifying the expression and calculating the sum effectively. This topic is relevant for those interested in combinatorial mathematics and series evaluation.

PREREQUISITES
  • Understanding of factorial notation and properties
  • Familiarity with summation notation and series
  • Basic knowledge of combinatorial mathematics
  • Experience with mathematical proofs and problem-solving techniques
NEXT STEPS
  • Study advanced combinatorial identities and their applications
  • Explore generating functions in combinatorial contexts
  • Learn about series convergence and divergence criteria
  • Investigate alternative methods for evaluating infinite series
USEFUL FOR

Mathematicians, students in advanced mathematics courses, and anyone interested in combinatorial analysis and series evaluation will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate $$\sum_{k=0}^{n}\dfrac{1}{(n-k)!(n+k)!}$$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!Evaluate
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:):

1. lfdahl
2. kaliprasad
3. noops

Solution from lfdahl:
\[\sum_{j=0}^{2n}\binom{2n}{j} =\sum_{j=0}^{n-1}\binom{2n}{j}+\binom{2n}{n}+\sum_{j=n+1}^{2n}\binom{2n}{j}=2^{2n}\]

The symmetry of binomial coefficients can be expressed as: $\binom{2n}{j}=\binom{2n}{2n-j}$

- and this leads to the following identity:

\[\sum_{j=n+1}^{2n}\binom{2n}{j} = \sum_{j=0}^{n-1}\binom{2n}{j}\;\;\;\; \;\;\;\; (1).\]

So the sum can be written as:

\[\sum_{j=0}^{2n}\binom{2n}{j} = 2\sum_{j=0}^{n-1}\binom{2n}{j}+\binom{2n}{n}\]

and we get an intermediate result:

\[\sum_{j=0}^{n-1}\binom{2n}{j}=\frac{2^{2n}-\binom{2n}{n}}{2} \;\;\;\; \;\;\;\; (2).\]

Now, let´s look at the sum to be evaluated. First, make a change in the index: $j = n-k$:

\[\sum_{k=0}^{n}\frac{1}{(n-k)!(n+k)!} = \sum_{j=0}^{n}\frac{1}{j!(2n-j)!}\]

Next step is to multiply by $\frac{(2n)!}{(2n)!}$:

\[=\frac{1}{(2n)!}\sum_{j=0}^{n}\frac{(2n)!}{j!(2n-j)!} = \frac{1}{(2n)!}\sum_{j=0}^{n}\binom{2n}{j} \].

- now expand the sum to all $2n+1$ terms, and subtract the last $n$ terms:

\[=\frac{1}{(2n)!}\left ( \sum_{j=0}^{2n}\binom{2n}{j}-\sum_{j=n+1}^{2n}\binom{2n}{j} \right ) \]

- make use of $(1)$:

\[= \frac{1}{(2n)!}\left ( 2^{2n} - \sum_{j=0}^{n-1}\binom{2n}{j} \right )\]

- and of $(2)$ to get the result:

\[= \frac{1}{(2n)!}\left ( 2^{2n} - \left ( \frac{2^{2n}-\binom{2n}{n}}{2}\right ) \right ) =\frac{2^{2n-1}+\frac{1}{2}\binom{2n}{n}}{(2n)!}.\]
Alternate solution from noops:
First note that $\frac1{(n-k)!(n+k)!}=\frac1{(2n)!}\binom{2n}{n-k}=\frac1{(2n)!}\binom{2n}{n+k}$.
Now, we have $$\begin{align*} S&=\sum_{k=0}^n \binom{2n}{n+k}\\&=\sum_{k=0}^n \binom{2n}{n-k}\\
&= \sum_{k=0}^n \binom{2n}{k}\\&= \sum_{k=0}^{2n}\binom{2n}{k}-\sum_{k=n+1}^{2n} \binom{2n}{k} \\
&=2^{2n}-\sum_{k=1}^n \binom{2n}{k+n}\\&=2^{2n}+\binom{2n}{n}-S\\
&=2^{2n-1}+\frac12\binom{2n}{n} \end{align*}$$
So that $$ \sum_{k=0}^n \frac1{(n-k)!(n+k)!} = \frac{2^{2n-1}}{(2n)!}+\frac1{2 (n)!^{2}}.$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K