MHB How Do You Evaluate the Sum of Reciprocal Factorial Pairs?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    2015
AI Thread Summary
The discussion focuses on evaluating the sum of reciprocal factorial pairs represented by the expression $$\sum_{k=0}^{n}\dfrac{1}{(n-k)!(n+k)!}$$. Participants share their solutions, with lfdahl providing a primary solution and noops offering an alternate approach. The thread highlights the importance of understanding factorial properties in solving the problem. Congratulations are extended to members who successfully solved the problem. The conversation emphasizes collaborative problem-solving in mathematics.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----

Evaluate $$\sum_{k=0}^{n}\dfrac{1}{(n-k)!(n+k)!}$$.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!Evaluate
 
Physics news on Phys.org
Congratulations to the following members for their correct solution:):

1. lfdahl
2. kaliprasad
3. noops

Solution from lfdahl:
\[\sum_{j=0}^{2n}\binom{2n}{j} =\sum_{j=0}^{n-1}\binom{2n}{j}+\binom{2n}{n}+\sum_{j=n+1}^{2n}\binom{2n}{j}=2^{2n}\]

The symmetry of binomial coefficients can be expressed as: $\binom{2n}{j}=\binom{2n}{2n-j}$

- and this leads to the following identity:

\[\sum_{j=n+1}^{2n}\binom{2n}{j} = \sum_{j=0}^{n-1}\binom{2n}{j}\;\;\;\; \;\;\;\; (1).\]

So the sum can be written as:

\[\sum_{j=0}^{2n}\binom{2n}{j} = 2\sum_{j=0}^{n-1}\binom{2n}{j}+\binom{2n}{n}\]

and we get an intermediate result:

\[\sum_{j=0}^{n-1}\binom{2n}{j}=\frac{2^{2n}-\binom{2n}{n}}{2} \;\;\;\; \;\;\;\; (2).\]

Now, let´s look at the sum to be evaluated. First, make a change in the index: $j = n-k$:

\[\sum_{k=0}^{n}\frac{1}{(n-k)!(n+k)!} = \sum_{j=0}^{n}\frac{1}{j!(2n-j)!}\]

Next step is to multiply by $\frac{(2n)!}{(2n)!}$:

\[=\frac{1}{(2n)!}\sum_{j=0}^{n}\frac{(2n)!}{j!(2n-j)!} = \frac{1}{(2n)!}\sum_{j=0}^{n}\binom{2n}{j} \].

- now expand the sum to all $2n+1$ terms, and subtract the last $n$ terms:

\[=\frac{1}{(2n)!}\left ( \sum_{j=0}^{2n}\binom{2n}{j}-\sum_{j=n+1}^{2n}\binom{2n}{j} \right ) \]

- make use of $(1)$:

\[= \frac{1}{(2n)!}\left ( 2^{2n} - \sum_{j=0}^{n-1}\binom{2n}{j} \right )\]

- and of $(2)$ to get the result:

\[= \frac{1}{(2n)!}\left ( 2^{2n} - \left ( \frac{2^{2n}-\binom{2n}{n}}{2}\right ) \right ) =\frac{2^{2n-1}+\frac{1}{2}\binom{2n}{n}}{(2n)!}.\]
Alternate solution from noops:
First note that $\frac1{(n-k)!(n+k)!}=\frac1{(2n)!}\binom{2n}{n-k}=\frac1{(2n)!}\binom{2n}{n+k}$.
Now, we have $$\begin{align*} S&=\sum_{k=0}^n \binom{2n}{n+k}\\&=\sum_{k=0}^n \binom{2n}{n-k}\\
&= \sum_{k=0}^n \binom{2n}{k}\\&= \sum_{k=0}^{2n}\binom{2n}{k}-\sum_{k=n+1}^{2n} \binom{2n}{k} \\
&=2^{2n}-\sum_{k=1}^n \binom{2n}{k+n}\\&=2^{2n}+\binom{2n}{n}-S\\
&=2^{2n-1}+\frac12\binom{2n}{n} \end{align*}$$
So that $$ \sum_{k=0}^n \frac1{(n-k)!(n+k)!} = \frac{2^{2n-1}}{(2n)!}+\frac1{2 (n)!^{2}}.$$
 
Back
Top