How Do You Integrate ##\int \tan 2x \ dx##?

  • Context: Undergrad 
  • Thread starter Thread starter askor
  • Start date Start date
  • Tags Tags
    Dx Integral Tan
Click For Summary
SUMMARY

The integral of ##\int \tan 2x \ dx## can be approached using substitution and trigonometric identities. The discussion highlights two methods: one using the substitution ##u = \sin x## and another suggesting a simpler substitution of ##u = 2x##. The latter method avoids complications arising from expanding sine and cosine in terms of sine and cosine of x, leading to a more straightforward solution. The final transformation results in the integral being expressed as ##-\frac{1}{2}\int \frac{dv}{v}##, which is easier to solve.

PREREQUISITES
  • Understanding of basic integral calculus
  • Familiarity with trigonometric identities
  • Knowledge of substitution methods in integration
  • Ability to manipulate differential expressions
NEXT STEPS
  • Study trigonometric substitution techniques in integral calculus
  • Learn about the properties of the tangent function and its integrals
  • Explore advanced integration techniques such as integration by parts
  • Investigate the use of substitution in solving complex integrals
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and integral techniques, as well as anyone seeking to deepen their understanding of trigonometric integrals.

askor
Messages
168
Reaction score
9
What is ##\int \tan 2x \ dx##?

What I get is

##\int \tan 2x \ dx##
##= \int \frac{\sin 2x}{\cos 2x} dx##
##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##

let u = sin x then ##\frac{du}{dx} = \cos x## or du = cos x dx

So

##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##
##= \int \frac{2u}{1 - 2u^2} du##
 
Physics news on Phys.org
askor said:
What is ##\int \tan 2x \ dx##?

What I get is

##\int \tan 2x \ dx##
##= \int \frac{\sin 2x}{\cos 2x} dx##
##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##

let u = sin x then ##\frac{du}{dx} = \cos x## or du = cos x dx

So

##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##
##= \int \frac{2u}{1 - 2u^2} du##
There may be easier ways to do this, but since you tried it this way, notice that ##2u du= -\frac{1}{2}d(1-2u²)##
 
askor said:
What is ##\int \tan 2x \ dx##?

What I get is

##\int \tan 2x \ dx##
##= \int \frac{\sin 2x}{\cos 2x} dx##
##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##

let u = sin x then ##\frac{du}{dx} = \cos x## or du = cos x dx

So

##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##
##= \int \frac{2u}{1 - 2u^2} du##
Rather than saying u = sin x, use u = 2x instead. Just expand tan u into ##\frac{sin\, u}{cos\, u}##.
This integral is much easier to solve.

Expanding sin 2x and cos 2x in terms of sin x and cos x just makes things more complicated.
 
askor said:
What is ##\int \tan 2x \ dx##?

What I get is

##\int \tan 2x \ dx##
##= \int \frac{\sin 2x}{\cos 2x} dx##
##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##

let u = sin x then ##\frac{du}{dx} = \cos x## or du = cos x dx

So

##= \int \frac{2 \sin x \cos x}{1 - 2 \sin^2 x}dx##
##= \int \frac{2u}{1 - 2u^2} du##
Let ##v= 1- 2u^2## so that ##dv= -4u du##. Then ##(-1/2)dv= 2u du## and the integral becomes ##-\frac{1}{2}\int \frac{dv}{v}##
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K