How do you prove that ln(a^x) = xln(a) and a^x = e^xln(a) without using exponent rules?

Click For Summary

Homework Help Overview

The discussion revolves around proving the identities ln(a^x) = xln(a) and a^x = e^(xln(a)) without relying on established exponent rules. Participants are exploring the definitions and properties of exponentiation and logarithms, particularly in the context of real numbers.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants discuss defining a^x for real numbers, starting from rational numbers and considering continuity. Questions arise about the definitions of e^x and ln(a), and whether certain properties can be assumed or need to be proven. There is also a suggestion to use power series and integral definitions to explore the identities.

Discussion Status

Several paths to proving the identities are being considered, including the use of continuity and definitions of logarithmic and exponential functions. Participants are engaging in a back-and-forth about the validity of assumptions and the need for rigorous definitions, with no clear consensus yet on a single approach.

Contextual Notes

There is an emphasis on not using established exponent rules and a focus on defining functions rigorously. The discussion also highlights the challenge of extending definitions from rational to real numbers.

logicgate
Messages
13
Reaction score
2
Homework Statement
The proof must contain all real numbers x, not just for integers, it must be true for rational and irrational numbers.
Relevant Equations
ln(a^x) = xln(a), a^x = e^xln(a)
In the book "Calculus by Michael Spivak" it says that a^x = e^xln(a) is a definition. And I am not convinced to accept this as true without a proof.
 
Physics news on Phys.org
You want to define ##a^x## for any real number ##x##. I suppose we can assume ##a\geq 0## for otherwise, we would get into trouble already with rational values of ##x.## I know what ##a^z## for ##z\in \mathbb{Z}## is since we can define it recursively. That allows us to define ##a^{1/n}=\sqrt[n]{a}## since an ##n## long product of them yields ##1.## We get therefore the definition for all ##x\in \mathbb{Q}.##

Now, it gets complicated. The real numbers are limits of certain sequences of rational numbers. Say we have ##x=\displaystyle{\lim_{n \to \infty}}x_n## and we require that ##x \mapsto a^x## is continuous. We need this condition so that we can define ##a^x= \displaystyle{\lim_{n \to \infty}}a^{x_n}.## The requirement makes sense if we look at the drawings of ##x_n \mapsto a^{x_n}.## However, it is an artificial requirement in the sense that we can only get from the rational to the reals if we accept a topological homomorphism, a continuous function.

Thus, we have defined ##a^x## by algebraic and topological means, that mimic the process from natural numbers over integers and rational numbers to real numbers.

So far so good. Now, what are ##x\mapsto e^x## and ##a\mapsto \ln(a)##? You have to define them before we prove the statement. For example, their definition by functional equations is possibly less helpful than their definition by power series or limits. So what are they to you? In order to prove something, we must agree on what we are allowed to use.
 
  • Like
Likes   Reactions: e_jane
use power series
 
Let us use that ##e^{\ln(x)}=x## or prove it with your power series. With that, we only have to show that ##x\cdot \ln a = \ln a^x## and the second equation follows. We can also assume that ##x>0## since the negative case ...
\begin{align*}
\ln a^{-x}&=\ln \dfrac{1}{a^x}=\ln \left(\dfrac{1}{a}\right)^x =x\ln \left(\dfrac{1}{a}\right)\\
&=x\cdot \left(\ln 1 -\ln a\right)=x\cdot(0-\ln a)=-x\ln a
\end{align*}
... follows from the positive case and ##x=0## is trivial. I would suggest that you use
$$\ln a^x=\lim _{h\to 0}\int _{1}^{a^x}{\frac {1}{t^{1-h}}}\,\mathrm {d} t$$
as definition and substitute ##s=t^{1/x}.##
 
How did you arrive to the conclusion that ln(1/a)^x = xln(1/a) ? This is exactly what I want to prove.
 
I did not arrive there. I proposed possible paths. You could prove it for rationals and use continuity and the fact that ##\mathbb{Q}\subseteq \mathbb{R}## is dense, or you can use the integral definition and the substitution I suggested.

However, you should do some of the steps on your own.
 
  • Like
Likes   Reactions: e_jane and PeroK
By definition:
$$b^n = \underbrace{b \times b\ ... \times b}_{n \text{ times}}$$
Therefore we get our first identity:
$$b^{n+m} = \underbrace{b \times b\ ... \times b}_{n \text{ times}}\times\underbrace{b \times b\ ... \times b}_{m \text{ times}}$$
$$b^{n+m} = b^n b^m$$
Similarly, we can get our second identity:
$$\left({b^n}\right)^m = \underbrace{\underbrace{b \times b\ ... \times b}_{n \text{ times}}\times\underbrace{b \times b\ ... \times b}_{n \text{ times}}\ ... \times \underbrace{b \times b\ ... \times b}_{n \text{ times}}}_{m \text{ times}}$$
$$\left({b^n}\right)^m = b^{nm}$$
About how this applies to rational and irrational numbers you can read the Wikipedia page about exponentiation starting here.

If you accept that and we define that ##y = \log_b x## if ##b^y = x##, then by our first identity:
$$b^{y_1}b^{y_2} = b^{y_1 + y_2}$$
$$x_1x_2 = b^{y_1 + y_2}$$
$$\log_b(x_1x_2) = y_1+y_2$$
$$\log_b(x_1x_2) = \log_b x_1+\log_b x_2$$
From there, if ##x_1 = x_2 = a##, then:
$$\log_b(a^2) = \log_b a+\log_b a = 2 \log_b a$$
And for ##\log_b(a^3)##, we get:
$$\log_b(a^2\times a) = 2\log_b a+\log_b a = 3 \log_b a$$
Or for the general case:
$$\log_b(a^x) = x \log_b a$$
As for the other case, we used the second identity:
$$a^x = \left(a\right)^x$$
$$a^x = \left(e^{ln(a)}\right)^x$$
$$a^x = e^{xln(a)}$$
 

Similar threads

Replies
6
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
8
Views
5K
Replies
5
Views
1K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
9
Views
3K
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K